近几日完成ResNet相关实现engine方法,但仅仅基于基于简单分类网络实现转换,且基于Tensorrt C++ API 构建YLOV5实现engine转换相关资料较多,然调用ONNX解析转换engine相关资料较少,因此本文将介绍如何使用onnx构建engine,并推理。

                                                                                                                                                         版本:tensorrt版本8.4,可使用8.0以上版本

 

一.yolov5转onnx方法:

  这里我将重点说明,我使用官方export.py能成功导出onnx文件,也能使用python的onnx runtime预测出正确结果,且也能转rknn模型完成测试,但使用tensorrt的onnx解析构建engine时候,便会出错。若知道答案可帮忙回答,万分感谢!

  方法一:

  需使用github:https://github.com/linghu8812/yolov5 成功转onnx,能被tensorrt的onnx解析,实现网络构建。

  其解析构建网络代码:

const char* onnx_path = "./best.onnx";

    INetworkDefinition* network = builder->createNetworkV2(1U); //此处重点1U为OU就有问题

    IParser* parser = createParser(*network, gLogger);
    parser->parseFromFile(onnx_path, static_cast<int32_t>(ILogger::Severity::kWARNING));
    //解析有错误将返回
    for (int32_t i = 0; i < parser->getNbErrors(); ++i) { std::cout << parser->getError(i)->desc() << std::endl; }
    std::cout << "successfully parse the onnx model" << std::endl;

方法二(修改时间:2022-0905):

可用github yolov7的转换代码https://github.com/WongKinYiu/yolov7/tree/u5  ,已测试可行。同时也测试了yolov7转换,任然可运行。

二.基于C++ 使用onnx转engine且推理

(1)yolov5 使用onnx转为engine代码,此代码比较原始,未做后处理逻辑而保存代码。

可忽略该版本代码直接使用(2)中代码。

#include "NvInfer.h"
#include "cuda_runtime_api.h"
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <chrono>
#include <cmath>
#include <cassert>


#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include <opencv2/opencv.hpp>


// onnx转换头文件
#include "NvOnnxParser.h"
using namespace nvonnxparser;





using namespace std;

#define CHECK(status) \
    do\
    {\
        auto ret = (status);\
        if (ret != 0)\
        {\
            std::cerr << "Cuda failure: " << ret << std::endl;\
            abort();\
        }\
    } while (0)
struct alignas(float) Detection {
    //center_x center_y w h
    float bbox[4];
    float conf;  // bbox_conf * cls_conf
    float class_id;
};

// stuff we know about the network and the input/output blobs
static const int INPUT_H = 640;
static const int INPUT_W = 640;
static const int OUTPUT_SIZE = 25200*85; //1000 * sizeof(Detection) / sizeof(float) + 1;

const char* INPUT_BLOB_NAME = "images";
const char* OUTPUT_BLOB_NAME = "output";

using namespace nvinfer1;

//static Logger gLogger;

//构建Logger
class Logger : public ILogger
{
    void log(Severity severity, const char* msg) noexcept override
    {
        // suppress info-level messages
        if (severity <= Severity::kWARNING)
            std::cout << msg << std::endl;
    }
} gLogger;





// Creat the engine using only the API and not any parser.
ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config)
{
    const char* onnx_path = "./best.onnx";

    INetworkDefinition* network = builder->createNetworkV2(1U); //此处重点1U为OU就有问题

    IParser* parser = createParser(*network, gLogger);
    parser->parseFromFile(onnx_path, static_cast<int32_t>(ILogger::Severity::kWARNING));
    //解析有错误将返回
    for (int32_t i = 0; i < parser->getNbErrors(); ++i) { std::cout << parser->getError(i)->desc() << std::endl; }
    std::cout << "successfully parse the onnx model" << std::endl;

    // Build engine
    builder->setMaxBatchSize(maxBatchSize);
    config->setMaxWorkspaceSize(1 << 20);
    //config->setFlag(nvinfer1::BuilderFlag::kFP16); // 设置精度计算
    //config->setFlag(nvinfer1::BuilderFlag::kINT8);
    ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
    std::cout << "successfully  convert onnx to  engine!!! " << std::endl;

    //销毁
    network->destroy();
    parser->destroy();

    return engine;
}

void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream)
{

    // Create builder
    IBuilder* builder = createInferBuilder(gLogger);
    IBuilderConfig* config = builder->createBuilderConfig();

    // Create model to populate the network, then set the outputs and create an engine
    ICudaEngine* engine = createEngine(maxBatchSize, builder, config);

    assert(engine != nullptr);

    // Serialize the engine
    (*modelStream) = engine->serialize();
    // Close everything down
    engine->destroy();
    builder->destroy();
    config->destroy();
}




void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
{
    const ICudaEngine& engine = context.getEngine();
    // Pointers to input and output device buffers to pass to engine.
    // Engine requires exactly IEngine::getNbBindings() number of buffers.
    assert(engine.getNbBindings() == 2);
    void* buffers[2];
    // In order to bind the buffers, we need to know the names of the input and output tensors.
    // Note that indices are guaranteed to be less than IEngine::getNbBindings()
    const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
    const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
    //const int inputIndex = 0;
    //const int outputIndex = 1;
    // Create GPU buffers on device
    cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float));
    cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float));
    // Create stream
    cudaStream_t stream;
    CHECK(cudaStreamCreate(&stream));
    // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
    CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
    context.enqueue(batchSize, buffers, stream, nullptr);
    CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
    cudaStreamSynchronize(stream);
    // Release stream and buffers
    cudaStreamDestroy(stream);
    CHECK(cudaFree(buffers[inputIndex]));
    CHECK(cudaFree(buffers[outputIndex]));
}


//加工图片变成拥有batch的输入, tensorrt输入需要的格式,为一个维度
void ProcessImage(cv::Mat image, float input_data[]) {
    //只处理一张图片,总之结果为一维[batch*3*INPUT_W*INPUT_H]
    //以下代码为投机取巧了

    cv::resize(image, image, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_LINEAR);
    std::vector<cv::Mat> InputImage;

    InputImage.push_back(image);



    int ImgCount = InputImage.size();

    //float input_data[BatchSize * 3 * INPUT_H * INPUT_W];
    for (int b = 0; b < ImgCount; b++) {
        cv::Mat img = InputImage.at(b);
        int w = img.cols;
        int h = img.rows;
        int i = 0;
        for (int row = 0; row < h; ++row) {
            uchar* uc_pixel = img.data + row * img.step;
            for (int col = 0; col < INPUT_W; ++col) {
                input_data[b * 3 * INPUT_H * INPUT_W + i] = (float)uc_pixel[2] / 255.0;
                input_data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
                input_data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
                uc_pixel += 3;
                ++i;
            }
        }

    }

}

int get_trtengine() {

    IHostMemory* modelStream{ nullptr };
    APIToModel(1, &modelStream);
    assert(modelStream != nullptr);

    std::ofstream p("./best.engine", std::ios::binary);
    if (!p)
    {
        std::cerr << "could not open plan output file" << std::endl;
        return -1;
    }
    p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
    modelStream->destroy();

    return 0;

}

int infer() {

    //加载engine引擎
    char* trtModelStream{ nullptr };
    size_t size{ 0 };
    std::ifstream file("./best.engine", std::ios::binary);
    if (file.good()) {
        file.seekg(0, file.end);
        size = file.tellg();
        file.seekg(0, file.beg);
        trtModelStream = new char[size];
        assert(trtModelStream);
        file.read(trtModelStream, size);
        file.close();
    }
    //反序列为engine,创建context

    IRuntime* runtime = createInferRuntime(gLogger);
    assert(runtime != nullptr);
    ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
    assert(engine != nullptr);
    IExecutionContext* context = engine->createExecutionContext();
    assert(context != nullptr);
    delete[] trtModelStream;



    //*********************推理-循环推理*********************//


    float time_read_img = 0.0;
    float time_infer = 0.0;
    static float prob[OUTPUT_SIZE];
    for (int i = 0; i < 1000; i++) {

        // 处理图片为固定输出

        auto start = std::chrono::system_clock::now();  //时间函数
        std::string path = "./1.jpg";
        std::cout << "img_path=" << path << endl;
        static float data[3 * INPUT_H * INPUT_W];
        cv::Mat img = cv::imread(path);
        ProcessImage(img, data);
        auto end = std::chrono::system_clock::now();
        time_read_img = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_read_img;


        //Run inference
        start = std::chrono::system_clock::now();  //时间函数
        doInference(*context, data, prob, 1);
        end = std::chrono::system_clock::now();
        time_infer = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_infer;
        std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;

        //输出后处理
        //std::cout <<"prob="<<prob << std::endl;
        float cls_float = prob[0];
        int cls_id = 0;
        for (int i = 0; i < OUTPUT_SIZE; i++) {
            if (cls_float < prob[i]) {
                cls_float = prob[i];
                cls_id = i;
            }
        }
        std::cout << "i=" << i << "\tcls_id=" << cls_id << "\t cls_float=" << cls_float << std::endl;
    }

    std::cout << "C++ 2engine" << "mean read img time =" << time_read_img / 1000 << "ms\t" << "mean infer img time =" << time_infer / 1000 << "ms" << std::endl;


    // Destroy the engine
    context->destroy();
    engine->destroy();
    runtime->destroy();


    return 0;
}



int main(int argc, char** argv)
{


   

    //string mode = argv[1];
    string mode = "-d";  //适用windows编译,固定指定参数

    //if (std::string(argv[1]) == "-s") {
    if (mode == "-s") {
        
        get_trtengine();
    }
    //else if (std::string(argv[1]) == "-d") {
    else if (mode == "-d") {
        infer();
    }
    else {
        return -1;
    }


    return 0;
}

yolov52engine

(2)yolov5 使用onnx转为engine代码,完整代码。

代码重要步骤有解释,具体查看代码。

代码平台:windows10  visual studio  相关安装可参考我以往博客点击这里 和 这里末尾

本代码实现功能如下:

①.onnx转engine;

②.engine推理;

③CPU实现NMS方法

#include "NvInfer.h"
#include "cuda_runtime_api.h"
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <chrono>
#include <cmath>
#include <cassert>


#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include <opencv2/opencv.hpp>


// onnx转换头文件
#include "NvOnnxParser.h"
using namespace nvonnxparser;





using namespace std;

#define CHECK(status) \
    do\
    {\
        auto ret = (status);\
        if (ret != 0)\
        {\
            std::cerr << "Cuda failure: " << ret << std::endl;\
            abort();\
        }\
    } while (0)
struct  Detection {
    //center_x center_y  w h
    float bbox[4];
    float conf;  // bbox_conf * cls_conf
    int class_id;
    int index;
};

// stuff we know about the network and the input/output blobs
static const int INPUT_H = 640;
static const int INPUT_W = 640;
static const int cls_num = 80;
static const int anchor_output_num = 25200;  //不同输入尺寸anchor:640-->25200 | 960-->56700
static const int OUTPUT_SIZE = 1* anchor_output_num *(cls_num+5); //1000 * sizeof(Detection) / sizeof(float) + 1;

const char* INPUT_BLOB_NAME = "images";
const char* OUTPUT_BLOB_NAME = "output";

using namespace nvinfer1;

//static Logger gLogger;

//构建Logger
class Logger : public ILogger
{
    void log(Severity severity, const char* msg) noexcept override
    {
        // suppress info-level messages
        if (severity <= Severity::kWARNING)
            std::cout << msg << std::endl;
    }
} gLogger;





// Creat the engine using only the API and not any parser.
ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config)
{
    const char* onnx_path = "./best.onnx";

    INetworkDefinition* network = builder->createNetworkV2(1U); //此处重点1U为OU就有问题

    IParser* parser = createParser(*network, gLogger);
    parser->parseFromFile(onnx_path, static_cast<int32_t>(ILogger::Severity::kWARNING));
    //解析有错误将返回
    for (int32_t i = 0; i < parser->getNbErrors(); ++i) { std::cout << parser->getError(i)->desc() << std::endl; }
    std::cout << "successfully parse the onnx model" << std::endl;

    // Build engine
    builder->setMaxBatchSize(maxBatchSize);
    config->setMaxWorkspaceSize(1 << 20);
    //config->setFlag(nvinfer1::BuilderFlag::kFP16); // 设置精度计算
    //config->setFlag(nvinfer1::BuilderFlag::kINT8);
    ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
    std::cout << "successfully  convert onnx to  engine!!! " << std::endl;

    //销毁
    network->destroy();
    parser->destroy();

    return engine;
}

void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream)
{

    // Create builder
    IBuilder* builder = createInferBuilder(gLogger);
    IBuilderConfig* config = builder->createBuilderConfig();

    // Create model to populate the network, then set the outputs and create an engine
    ICudaEngine* engine = createEngine(maxBatchSize, builder, config);

    assert(engine != nullptr);

    // Serialize the engine
    (*modelStream) = engine->serialize();
    // Close everything down
    engine->destroy();
    builder->destroy();
    config->destroy();
}




void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
{
    const ICudaEngine& engine = context.getEngine();
    // Pointers to input and output device buffers to pass to engine.
    // Engine requires exactly IEngine::getNbBindings() number of buffers.
    assert(engine.getNbBindings() == 2);
    void* buffers[2];
    // In order to bind the buffers, we need to know the names of the input and output tensors.
    // Note that indices are guaranteed to be less than IEngine::getNbBindings()
    const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
    const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
    //const int inputIndex = 0;
    //const int outputIndex = 1;
    // Create GPU buffers on device
    cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float));
    cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float));
    // Create stream
    cudaStream_t stream;
    CHECK(cudaStreamCreate(&stream));
    // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
    CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
    context.enqueue(batchSize, buffers, stream, nullptr);
    CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
    cudaStreamSynchronize(stream);
    // Release stream and buffers
    cudaStreamDestroy(stream);
    CHECK(cudaFree(buffers[inputIndex]));
    CHECK(cudaFree(buffers[outputIndex]));
}



int get_trtengine() {

    IHostMemory* modelStream{ nullptr };
    APIToModel(1, &modelStream);
    assert(modelStream != nullptr);

    std::ofstream p("./best.engine", std::ios::binary);
    if (!p)
    {
        std::cerr << "could not open plan output file" << std::endl;
        return -1;
    }
    p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
    modelStream->destroy();

    return 0;

}





//加工图片变成拥有batch的输入, tensorrt输入需要的格式,为一个维度
void ProcessImage(cv::Mat image, float input_data[]) {
    //只处理一张图片,总之结果为一维[batch*3*INPUT_W*INPUT_H]
    //以下代码为投机取巧了

    cv::resize(image, image, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_LINEAR);
    std::vector<cv::Mat> InputImage;

    InputImage.push_back(image);



    int ImgCount = InputImage.size();

    //float input_data[BatchSize * 3 * INPUT_H * INPUT_W];
    for (int b = 0; b < ImgCount; b++) {
        cv::Mat img = InputImage.at(b);
        int w = img.cols;
        int h = img.rows;
        int i = 0;
        for (int row = 0; row < h; ++row) {
            uchar* uc_pixel = img.data + row * img.step;
            for (int col = 0; col < INPUT_W; ++col) {
                input_data[b * 3 * INPUT_H * INPUT_W + i] = (float)uc_pixel[2] / 255.0;
                input_data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
                input_data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
                uc_pixel += 3;
                ++i;
            }
        }

    }



}




//********************************************** NMS code **********************************//


/*
struct  Detection {
    //center_x center_y w h
    float bbox[4];
    float conf;  // bbox_conf * cls_conf
    int class_id;
    int index;
};
*/
struct Bbox {
    int x;
    int y;
    int w;
    int h;
};

float iou(Bbox box1, Bbox box2) {

    int x1 = max(box1.x, box2.x);
    int y1 = max(box1.y, box2.y);
    int x2 = min(box1.x + box1.w, box2.x + box2.w);
    int y2 = min(box1.y + box1.h, box2.y + box2.h);
    int w = max(0, x2 - x1);
    int h = max(0, y2 - y1);
    float over_area = w * h;
    return over_area / (box1.w * box1.h + box2.w * box2.h - over_area);
}

int get_max_index(vector<Detection> pre_detection) {
    //获得最佳置信度的值,并返回对应的索引值
    int index;
    float conf;
    if (pre_detection.size() > 0) {
        index = 0;
        conf = pre_detection.at(0).conf;
        for (int i = 0; i < pre_detection.size(); i++) {
            if (conf < pre_detection.at(i).conf) {
                index = i;
                conf = pre_detection.at(i).conf;
            }
        }
        return index;
    }
    else {
        return -1;
    }


}
bool judge_in_lst(int index, vector<int> index_lst) {
    //若index在列表index_lst中则返回true,否则返回false
    if (index_lst.size() > 0) {
        for (int i = 0; i < index_lst.size(); i++) {
            if (index == index_lst.at(i)) {
                return true;
            }
        }
    }
    return false;
}
vector<int> nms(vector<Detection> pre_detection, float iou_thr)
{
    /*
    返回需保存box的pre_detection对应位置索引值

    */
    int index;
    vector<Detection> pre_detection_new;
    //Detection det_best;
    Bbox box_best, box;
    float iou_value;
    vector<int> keep_index;
    vector<int> del_index;
    bool keep_bool;
    bool del_bool;

    if (pre_detection.size() > 0) {

        pre_detection_new.clear();
        // 循环将预测结果建立索引
        for (int i = 0; i < pre_detection.size(); i++) {
            pre_detection.at(i).index = i;
            pre_detection_new.push_back(pre_detection.at(i));
        }
        //循环便利获得保留box位置索引-相对输入pre_detection位置
        while (pre_detection_new.size() > 0) {
            index = get_max_index(pre_detection_new);
            if (index >= 0) {
                keep_index.push_back(pre_detection_new.at(index).index); //保留索引位置

                // 更新最佳保留box
                box_best.x = pre_detection_new.at(index).bbox[0];
                box_best.y = pre_detection_new.at(index).bbox[1];
                box_best.w = pre_detection_new.at(index).bbox[2];
                box_best.h = pre_detection_new.at(index).bbox[3];

                for (int j = 0; j < pre_detection.size(); j++) {
                    keep_bool = judge_in_lst(pre_detection.at(j).index, keep_index);
                    del_bool = judge_in_lst(pre_detection.at(j).index, del_index);
                    if ((!keep_bool) && (!del_bool)) { //不在keep_index与del_index才计算iou
                        box.x = pre_detection.at(j).bbox[0];
                        box.y = pre_detection.at(j).bbox[1];
                        box.w = pre_detection.at(j).bbox[2];
                        box.h = pre_detection.at(j).bbox[3];
                        iou_value = iou(box_best, box);
                        if (iou_value > iou_thr) {
                            del_index.push_back(j); //记录大于阈值将删除对应的位置
                        }
                    }

                }
                //更新pre_detection_new
                pre_detection_new.clear();
                for (int j = 0; j < pre_detection.size(); j++) {
                    keep_bool = judge_in_lst(pre_detection.at(j).index, keep_index);
                    del_bool = judge_in_lst(pre_detection.at(j).index, del_index);
                    if ((!keep_bool) && (!del_bool)) {
                        pre_detection_new.push_back(pre_detection.at(j));
                    }
                }

            }


        }


    }

    del_index.clear();
    del_index.shrink_to_fit();
    pre_detection_new.clear();
    pre_detection_new.shrink_to_fit();

    return  keep_index;

}





vector<Detection>  postprocess(float* prob, float conf_thr = 0.2, float nms_thr = 0.4) {
    /*
    #####################此函数处理一张图预测结果#########################
    prob为[x y w h  score  multi-pre] 如80类-->(1,anchor_num,85)

    */

    vector<Detection> pre_results;
    vector<int> nms_keep_index;
    vector<Detection> results;
    bool keep_bool;
    Detection pre_res;
    float conf;
    int tmp_idx;
    float tmp_cls_score;
    for (int i = 0; i < anchor_output_num; i++) {
        tmp_idx = i * (cls_num + 5);
        pre_res.bbox[0] = prob[tmp_idx + 0];
        pre_res.bbox[1] = prob[tmp_idx + 1];
        pre_res.bbox[2] = prob[tmp_idx + 2];
        pre_res.bbox[3] = prob[tmp_idx + 3];
        conf = prob[tmp_idx + 4];  //是为目标的置信度
        tmp_cls_score = prob[tmp_idx + 5] * conf;
        pre_res.class_id = 0;
        pre_res.conf = 0;
        for (int j = 1; j < cls_num; j++) {
            tmp_idx = i * (cls_num + 5) + 5 + j; //获得对应类别索引
            if (tmp_cls_score < prob[tmp_idx] * conf)
            {
                tmp_cls_score = prob[tmp_idx] * conf;
                pre_res.class_id = j;
                pre_res.conf = tmp_cls_score;
            }
        }
        if (conf >= conf_thr) {

            pre_results.push_back(pre_res);
        }

    }

    //使用nms
    nms_keep_index=nms(pre_results,nms_thr);

    for (int i = 0; i < pre_results.size(); i++) {
        keep_bool = judge_in_lst(i, nms_keep_index);
        if (keep_bool) {
            results.push_back(pre_results.at(i));
        }

    }



    pre_results.clear();
    pre_results.shrink_to_fit();
    nms_keep_index.clear();
    nms_keep_index.shrink_to_fit();


    return results;

}

cv::Mat draw_rect(cv::Mat image, vector<Detection> results) {
    /*
    image 为图像

    struct  Detection {
    float bbox[4];  //center_x center_y  w h
    float conf;  // 置信度
    int class_id; //类别id 
    int index;    //可忽略
    };
    
    */

   
    float x;
    float y;
    float y_tmp;
    float w;
    float h;
    string info;

    cv::Rect rect;
    for (int i = 0; i < results.size(); i++) {
        
        x = results.at(i).bbox[0];
        y= results.at(i).bbox[1];
        w= results.at(i).bbox[2];
        h=results.at(i).bbox[3];
        x = (int)(x - w / 2);
        y = (int)(y - h / 2);
        w = (int)w;
        h = (int)h;
        info = "id:";
        info.append(to_string(results.at(i).class_id));
        info.append(" s:");
        info.append(  to_string((int)(results.at(i).conf*100)  )   );
        info.append("%");
        rect= cv::Rect(x, y, w, h);
        cv::rectangle(image, rect, cv::Scalar(0, 255, 0), 1, 1, 0);//矩形的两个顶点,两个顶点都包括在矩形内部
        cv::putText(image, info, cv::Point(x, y), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(0, 255, 0), 0.4, 1, false);


        
    
    }


    return image;

}



int infer() {

    //加载engine引擎
    char* trtModelStream{ nullptr };
    size_t size{ 0 };
    std::ifstream file("./best.engine", std::ios::binary);
    if (file.good()) {
        file.seekg(0, file.end);
        size = file.tellg();
        file.seekg(0, file.beg);
        trtModelStream = new char[size];
        assert(trtModelStream);
        file.read(trtModelStream, size);
        file.close();
    }
    //反序列为engine,创建context

    IRuntime* runtime = createInferRuntime(gLogger);
    assert(runtime != nullptr);
    ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
    assert(engine != nullptr);
    IExecutionContext* context = engine->createExecutionContext();
    assert(context != nullptr);
    delete[] trtModelStream;



    //*********************推理-循环推理*********************//


    float time_read_img = 0.0;
    float time_infer = 0.0;
    float prob[OUTPUT_SIZE];
    vector<Detection> results;

    for (int i = 0; i < 1000; i++) {
        // 处理图片为固定输出

        auto start = std::chrono::system_clock::now();  //时间函数
        std::string path = "./7.jpg";
        std::cout << "img_path=" << path << endl;
        static float data[3 * INPUT_H * INPUT_W];
        cv::Mat img = cv::imread(path);
        
        ProcessImage(img, data);
        auto end = std::chrono::system_clock::now();
        time_read_img = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_read_img;


        //Run inference
        start = std::chrono::system_clock::now();  //时间函数
        doInference(*context, data, prob, 1);
        end = std::chrono::system_clock::now();
        time_infer = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_infer;
        std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;

        //输出后处理
        //std::cout <<"prob="<<prob << std::endl;
        results.clear();
        results=postprocess(prob, 0.3,  0.4);

        cv::resize(img, img, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_LINEAR);
        img=draw_rect(img,results);

        cv::imshow("www", img);
        cv::waitKey(0);

        cout << "ok" << endl;



    }

    std::cout << "C++ 2engine" << "mean read img time =" << time_read_img / 1000 << "ms\t" << "mean infer img time =" << time_infer / 1000 << "ms" << std::endl;


    // Destroy the engine
    context->destroy();
    engine->destroy();
    runtime->destroy();


    return 0;
}






int main(int argc, char** argv)
{


 
    //string mode = argv[1];
    string mode = "-d";  //适用windows编译,固定指定参数

    //if (std::string(argv[1]) == "-s") {
    if (mode == "-s") {
        
        get_trtengine();
    }
    //else if (std::string(argv[1]) == "-d") {
    else if (mode == "-d") {
        infer();
    }
    else {
        return -1;
    }


    return 0;
}

yolov52engine(onnx)

三.预测结果展示:

 自己训练模型转换测试结果:

yolov5与yolov7测试结果(修改时间:2022-0906)

                                  yolov5测试结果                                                                                                                                                                                                                                                

  yolov7测试结果            

yolo linux测试结果:

 四.CMakeLists.txt编写(添加:2022-1006)

      介绍如何使用编译命令在ubuntu(linux)环境中运行,以下代码适用YOLO Onnx及C++ 源码构建,其中target_link_libraries(yolo /home/ubuntu/soft/TensorRT-8.2.5.1/lib/stubs/libnvonnxparser.so)此库的onnx需要调用,若C++则可忽略。

引用链接:https://www.cnblogs.com/tangjunjun/p/16624566.html

engine的CMakeLists.txt构建:

cmake_minimum_required(VERSION 2.6)

project(yolo)

add_definitions(-std=c++11)

option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE Debug)

include_directories(${PROJECT_SOURCE_DIR}/include)
# include and link dirs of cuda and tensorrt, you need adapt them if yours are different
# cuda
include_directories(/usr/local/cuda/include)
link_directories(/usr/local/cuda/lib64)
# tensorrt
include_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/include/)
link_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/lib/)

include_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/samples/common/)
#link_directories(/home/ubuntu/soft/TensorRT-8.2.5.1/lib/stubs/)

# opencv
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(yolo ${PROJECT_SOURCE_DIR}/main.cpp)
target_link_libraries(yolo nvinfer)
target_link_libraries(yolo cudart)
target_link_libraries(yolo ${OpenCV_LIBS})
target_link_libraries(yolo /home/ubuntu/soft/TensorRT-8.2.5.1/lib/stubs/libnvonnxparser.so)

add_definitions(-O2 -pthread)

本代码链接:

链接:https://pan.baidu.com/s/1ujX19IUV0EPSIMyIcBnClA?pwd=r63z 
提取码:r63z