Matlab求解非线性规划(fmincon函数的使用)

321
0
2020年12月1日 09时15分

Matlab中fmincon函数的使用

  • 1. 介绍
  • 2. 语法
  • 3. 示例
    • 3.1 编写M函数fun1.m,定义目标函数
    • 3.2 编写M函数fun2.m,定义非线性约束条件
    • 3.3 编写主程序函数

最近写文章需要用到fmincon函数做优化,于是抽空学习一下;按照惯例,继续开个博文记录一下学习的过程

参考资料:
[寻找约束非线性多变量函数的最小值 – MathWorks]
[Matlab求解非线性规划,fmincon函数的用法总结 – 博客园]
[Matlab非线性规划 – 博客园]

1. 介绍

在Matlab中,fmincon 函数可以求解带约束的非线性多变量函数(Constrained nonlinear multivariable function)的最小值,即可以用来求解非线性规划问题

 

1

 

2. 语法

 

Matlab求解命令为:
x = f m i n c o n ( f u n , x 0 , A , b , A e q , b e q , l b , u b , n o n l c o n , o p t i o n s ) x = fmincon(fun,x0,A, b,Aeq,beq,lb,ub,nonlcon,options)x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

 

  • x的返回值是决策向量x的取值,fval的返回值是目标函数f(x)的取值
  • fun是用M文件定义的函数f(x),代表了(非)线性目标函数
  • x0是x的初始值
  • A, b, Aeq, beq定义了线性约束,如果没有线性约束,则A=[], b=[], Aeq=[], beq=[]
  • lb和ub是变量x的下界和上界,如果下界和上界没有约束,则lb=[], ub=[], 也可以写成lb的各分量都为 -inf, ub的各分量都为inf
  • nonlcon是用M文件定义的非线性向量函数约束
  • options定义了优化参数,不填写表示使用Matlab默认的参数设置

3. 示例2

 

3.1 编写M函数fun1.m,定义目标函数

 

function f = fun1(x)
f = x(1).^2 + x(2).^2 + x(3).^2 + 8;
end

 

 

3.2 编写M函数fun2.m,定义非线性约束条件

 

function [g,h] = fun2(x)
g(1) = - x(1).^2 + x(2) - x(3).^2;
g(2) = x(1) + x(2).^2 + x(3).^3 - 20;
% g代表不等式约束,Matlab中默认g<=0,所以这里取相反数
h(1) = - x(1).^2 - x(2).^2 + 2;
h(2) = x(2) + 2 * x(3).^2 - 3;
% h代表等式约束        
end

 

 

3.3 编写主程序函数

 

options = optimset;
[x, y] = fmincon('fun1', rand(3, 1), [], [], [], [], zeros(3, 1), [], 'fun2', options)
% 'fun1'代表目标函数,rand(3, 1)随机给了x初值,zeros(3, 1)代表下限为0,即x1, x2, x3>=0, 'fun2'即刚才写的约束条件

 

 

 

发表评论

后才能评论