通过ROS控制真实机械臂(18) — 构建 octocmap 用于碰撞检测和避障

141
0
2021年2月19日 09时36分

师兄和同门在做SLAM的时候,经常会用到的 octomap ,也就是八叉树地图。octomap相比于点云地图来说大大减小了地图的存储空间。既然octomap可以用于导航和避障,那么自然也可以导入moveit!,作为机械臂路径规划过程中的障碍物,方便机械臂和障碍物之间进行碰撞检测。

 

这里首先要提一下Movelt!并没有整合了物体识别和环境建模这些模块,而是利用传感器采集的数据导入的。而我的想法就是通过双目相机的深度及RGB图像生成用于碰撞检测的 octomap,这些octomap也可以依据贝叶斯准则不断实时更新。这样机械臂就可以避开真实世界的障碍物了。

 

通过ROS控制真实机械臂(18) — 构建 octocmap 用于碰撞检测和避障插图

 

碰撞检测是运动规划的一大难题,我们需要对每个采样点做有效性判断。所以,运动规划需要提供一个高效的碰撞检测算法。虽然Movelt!需要从外部传感器获取点云或深度信息,但是碰撞检测的算法moveit!还是完美集成了FCL( Flexible Collision Library),可以非常快速地实现octomap的碰撞检测。这个算法在学习ROS的时候,好像就囫囵吞枣的使用过了,当时还是手动往moveit!中导入物体的model的。值得一提的是,对于场景中每个物体都进行碰撞检测是浪费时间的,于是我们在配置moveit!的时候曾经生成过ACM(Allowed Collision Matrix)来进行优化。

 

1.ROS中深度图像转换成点云地图PCL

 

如果不是在ROS中操作的话,需要安装PCL库,并进行一定的依赖安装和配置,可以参考如下官网连接https://github.com/OctoMap/octomap 和大佬博客 https://blog.csdn.net/LOVE1055259415/article/details/79911653

 

大佬提供都是通过读取.pcd文件然后转换成octomap并写入.ot等文件当中,对于咱ROS中的使用不太方便,需要通过ROS消息的方式订阅点云消息并转换成octomap然后发布导入moveit!中。而且我所使用的传感器是双目相机,最开始获取的数据是RGBD信息,所以首先需要的是深度图像转换成点云信息的方法。于是构建了一个depth2pointcloud包测试一下

 

#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <iostream>
#include <string>
#include <stdlib.h>
#include <stdio.h>
#include <sstream>
#include <vector>
#include <opencv2/opencv.hpp>
 
#include<ros/ros.h>
#include<pcl/point_cloud.h>
#include<pcl_conversions/pcl_conversions.h>
#include<sensor_msgs/PointCloud2.h>
 
using namespace cv;
using namespace std;
 
 
pcl::PointCloud<pcl::PointXYZRGB>::Ptr depth2cloud( cv::Mat rgb_image, cv::Mat depth_image )
{
   # 相机参数
  float f = 570.3;
  float cx = 320.0, cy = 240.0;
 
  pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_ptr( new    pcl::PointCloud<pcl::PointXYZRGB> () );
  cloud_ptr->width  = rgb_image.cols;
  cloud_ptr->height = rgb_image.rows;
  cloud_ptr->is_dense = false;
 
  for ( int y = 0; y < rgb_image.rows; ++ y ) {
    for ( int x = 0; x < rgb_image.cols; ++ x ) {
      pcl::PointXYZRGB pt;
      if ( depth_image.at<unsigned short>(y, x) != 0 )
      {
          pt.z = depth_image.at<unsigned short>(y, x)/1000.0;
          pt.x = (x-cx)*pt.z/f;
          pt.y = (y-cy)*pt.z/f;
          pt.r = rgb_image.at<cv::Vec3b>(y, x)[2];
          pt.g = rgb_image.at<cv::Vec3b>(y, x)[1];
          pt.b = rgb_image.at<cv::Vec3b>(y, x)[0];
          cloud_ptr->points.push_back( pt );
      }
      else
      {
          pt.z = 0;
          pt.x = 0;
          pt.y = 0;
          pt.r = 0;
          pt.g = 0;
          pt.b = 0;
          cloud_ptr->points.push_back( pt );
      }
    }
  }
  return cloud_ptr;
}
 
int main(int argc,char* argv[])
{
    ros::init (argc, argv, "publish_depth");
    ros::NodeHandle nh;
 
    cv::Mat depth;
    cv::Mat image;
    image=cv::imread("/home/redwall/catkin_ws/src/depth2pointcloud/data/rgb_index/144.ppm");
    depth=cv::imread("/home/redwall/catkin_ws/src/depth2pointcloud/data/dep_index/144.pgm",IMREAD_ANYDEPTH);
    string pcdName("/home/redwall/catkin_ws/src/pointcloud2octomap/data/testpcd.pcd");
    if(!image.data||!depth.data)        // 判断图片调入是否成功
    {
        cout<< "no image"<<endl;
        return -1;        // 调入图片失败则退出
    }
 
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    cloud=depth2cloud(image,depth);
 
    pcl::io::savePCDFileASCII(pcdName,*cloud);
    cout<<"successful"<<endl;
 
    return 0;
}

 

上述ROS包通过读取RGB图片和 深度图像,利用pcl库方法转换成 <PointXYZRGB>形式的点云文件,并写入pcd文件保存,然后通过大佬的方法转换成的octomap如下:

 

通过ROS控制真实机械臂(18) — 构建 octocmap 用于碰撞检测和避障插图(1)

 

2.ROS中深度图像直接转换成octomap

 

既然测试完毕,那就可以直接通过depth转换成octomap了,上面使用的方法同时使用了RGBD,转换成PointXYZRGB,简单起见,可以舍弃RGB信息,仅使用深度图像来生成<PointXYZ>,然后生成octomap,详细请参考《PCL点云库》。

 

1.创建ROS包:depth2octomap

 

2.CMakeLists.txt和package.xml

 

cmake_minimum_required(VERSION 2.8.3)
project(depth2octomap)
 
find_package(catkin REQUIRED COMPONENTS
        roscpp
        rospy
        std_msgs
        rostime
        sensor_msgs
        message_filters
        cv_bridge
        image_transport
)
find_package(PCL REQUIRED)
find_package(OpenCV REQUIRED)
find_package(OpenMP)
 
catkin_package()
 
include_directories(${catkin_INCLUDE_DIRS} ${PCL_INCLUDE_DIRS} ${OPENCV_INCLUDE_DIRS})
 
add_executable (depth2octomap src/depth2octomap.cpp)
target_link_libraries (depth2octomap ${catkin_LIBRARIES} ${PCL_LIBRARIES} ${OpenCV_LIBS})

 

<?xml version="1.0"?>
<package>
  <name>depth2octomap</name>
  <version>0.0.0</version>
  <description>The depth2octomap package</description>
  <maintainer email="dyc@todo.todo">crp</maintainer>
  <license>TODO</license>
  <buildtool_depend>catkin</buildtool_depend>
  <build_depend>roscpp</build_depend>
  <build_depend>rospy</build_depend>
  <build_depend>std_msgs</build_depend>
  <build_depend>cv_bridge</build_depend>
  <build_depend>image_transport</build_depend>
  <run_depend>roscpp</run_depend>
  <run_depend>rospy</run_depend>
  <run_depend>std_msgs</run_depend>
  <run_depend>cv_bridge</run_depend>
  <run_depend>image_transport</run_depend>
 
  <export>
  </export>
</package>

 

3.src/depth2octomap.cpp

 

#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <opencv2/highgui/highgui.hpp>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include <sensor_msgs/PointCloud2.h>
 
// PCL 库
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl_conversions/pcl_conversions.h>
 
// 定义点云类型
typedef pcl::PointCloud<pcl::PointXYZRGB> PointCloud;
 
using namespace std;
using namespace cv;
 
// 相机内参
const double camera_factor = 1000;
const double camera_cx = 319.025;
const double camera_cy = 236.750;
const double camera_fx = 384.657;
const double camera_fy = 384.657;
 
// 全局变量:图像矩阵和点云
cv_bridge::CvImagePtr color_ptr, depth_ptr;
cv::Mat color_pic, depth_pic;
 
/***  RGB处理  ***/
void color_Callback(const sensor_msgs::ImageConstPtr& color_msg)
{
    try
    {
        color_ptr = cv_bridge::toCvCopy(color_msg, sensor_msgs::image_encodings::BGR8);
        cv::waitKey(1050); // 不断刷新图像,频率时间为int delay,单位为ms
    }
    catch (cv_bridge::Exception& e )
    {
        ROS_ERROR("Could not convert from '%s' to 'bgr8'.", color_msg->encoding.c_str());
    }
    color_pic = color_ptr->image;
}
 
/***  Depth处理  ***/
void depth_Callback(const sensor_msgs::ImageConstPtr& depth_msg)
{
    try
    {
        depth_ptr = cv_bridge::toCvCopy(depth_msg, sensor_msgs::image_encodings::TYPE_32FC1);
        cv::waitKey(1050);
    }
    catch (cv_bridge::Exception& e)
    {
        ROS_ERROR("Could not convert from '%s' to 'mono16'.", depth_msg->encoding.c_str());
    }
 
    depth_pic = depth_ptr->image;
}
 
int main(int argc, char **argv)
{
    ros::init(argc, argv, "publish_octomap");
    ros::NodeHandle nh;
    image_transport::ImageTransport it(nh);
    image_transport::Subscriber sub = it.subscribe("/camera/color/image_raw", 1, color_Callback);
    image_transport::Subscriber sub1 = it.subscribe("/camera/depth/image_rect_raw", 1, depth_Callback);
    ros::Publisher pointcloud_publisher = nh.advertise<sensor_msgs::PointCloud2>("/pointcloud/output", 1);
    // 点云变量
    PointCloud::Ptr cloud ( new PointCloud );
    sensor_msgs::PointCloud2 pub_pointcloud;
 
    double sample_rate = 1.0; // 1HZ
    ros::Rate naptime(sample_rate); // use to regulate loop rate
 
    while (ros::ok()) {
        // 遍历深度图
        for (int m = 0; m < depth_pic.rows; m++){
            for (int n = 0; n < depth_pic.cols; n++){
                // 获取深度图中(m,n)处的值
                float d = depth_pic.ptr<float>(m)[n];//ushort d = depth_pic.ptr<ushort>(m)[n];
                // d 可能没有值,若如此,跳过此点
                if (d == 0)
                    continue;
                // d 存在值,则向点云增加一个点
                pcl::PointXYZRGB p;
 
                // 计算这个点的空间坐标
//                p.z = double(d) / camera_factor;
//                p.x = (n - camera_cx) * p.z / camera_fx;
//                p.y = (m - camera_cy) * p.z / camera_fy;
 
                // 相机模型是垂直的
                p.x = double(d) / camera_factor;
                p.y = -(n - camera_cx) * p.x / camera_fx;
                p.z = -(m - camera_cy) * p.x / camera_fy;
 
                // 从rgb图像中获取它的颜色
                // rgb是三通道的BGR格式图,所以按下面的顺序获取颜色
                p.b = color_pic.ptr<uchar>(m)[n*3];
                p.g = color_pic.ptr<uchar>(m)[n*3+1];
                p.r = color_pic.ptr<uchar>(m)[n*3+2];
 
                // 把p加入到点云中
                cloud->points.push_back( p );
            }
        }
 
        // 设置并保存点云
        cloud->height = 1;
        cloud->width = cloud->points.size();
        ROS_INFO("point cloud size = %d",cloud->width);
        cloud->is_dense = false;// 转换点云的数据类型
        pcl::toROSMsg(*cloud,pub_pointcloud);
        pub_pointcloud.header.frame_id = "camera_link";
        pub_pointcloud.header.stamp = ros::Time::now();
        // 发布合成点云
        pointcloud_publisher.publish(pub_pointcloud);
        // 清除数据并退出
        cloud->points.clear();
 
        ros::spinOnce(); //allow data update from callback;
        naptime.sleep(); // wait for remainder of specified period;
    }
}

 

4.上面的depth2octomap节点已经将深度转换成点云了,至于怎么转换成octomap还需要通过launch来启动octomap_server节点:octomaptransform.launch

 

<launch>
 
  <node name="depth2octomap" pkg="depth2octomap" type="depth2octomap"/>
 
  <node pkg="octomap_server" type="octomap_server_node" name="octomap_server">
    <!-- resolution in meters per pixel -->
    <param name="resolution" value="0.05" />
    <!-- name of the fixed frame, needs to be "/map" for SLAM -->
    <param name="frame_id" type="string" value="camera_link" />
    <!-- max range / depth resolution of the kinect in meter -->
    <param name="sensor_model/max_range" value="100.0" />
    <param name="latch" value="true" />
    <!-- max/min height for occupancy map, should be in meters -->
    <param name="pointcloud_max_z" value="100" />
    <param name="pointcloud_min_z" value="-100" />
    <!-- topic from where pointcloud2 messages are subscribed -->
    <remap from="/cloud_in" to="/pointcloud/output" />
  </node>
</launch>

 

3.Realsense深度转octomap

 

刚写这篇博客的时候,还没有相机在手上,结果刚过两天,老板的realsense D435就发货了,花了两天时间在ROS中完成了相机的启动,https://blog.csdn.net/qq_34935373/article/details/104891420 ,通过相机发布RGBD信息,然后用上面的包转换成octomap,其中还有一些细节需要关注:

 

1.相机参数矩阵获取:fx、fy、cx、cy,realsense提供了获取这些参数的API,可以查看出厂的标定参数https://github.com/IntelRealSense/librealsense/issues/5239

 

2.计算点云在空间中的坐标的时候,因为realsense发布的带模型的launch的时候,由于模型在RViz中式水平放置的,所以坐标需要调整成x方向,而不是原本的z方向,因此就有如下调整:

 

// 计算这个点的空间坐标
//p.z = double(d) / camera_factor;
//p.x = (n – camera_cx) * p.z / camera_fx;
//p.y = (m – camera_cy) * p.z / camera_fy;

 

// 相机模型是垂直的
p.x = double(d) / camera_factor;
p.y = -(n – camera_cx) * p.x / camera_fx;
p.z = -(m – camera_cy) * p.x / camera_fy;

 

3.通过配置octosever修改点云空间范围

 

<param name="pointcloud_max_z" value="100" /> 
<param name="pointcloud_min_z" value="-100" />

 

# 启动相机节点,发布RGBD信息
$ roslaunch realsense2_camera rs_camera.launch
 
# 订阅RGBD信息,转换成点云并发布成octomap
$ roslaunch depth2octomap octomaptransform.launch

 

下面两幅图分别是点云图和八叉树图:

 

通过ROS控制真实机械臂(18) — 构建 octocmap 用于碰撞检测和避障插图(2)

 

通过ROS控制真实机械臂(18) — 构建 octocmap 用于碰撞检测和避障插图(3)

 

4.TODO

 

当然,在获取点云数据时 ,由于设备精度,操作者经验环境因素带来的影响,被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中讲不可避免的出现一些噪声。所以还需要在上述文件中根据需要加上点云滤波,离群点舍弃等操作。参考大神:https://blog.csdn.net/qq_34719188/article/details/79179430

 


Moveit!通过场景规划Planning_scene导入octomap

 

和之前的方法差不多类似,只不过应用的场景变成了moveit!当中,通过使用深度相机感知环境数据,感知后的环境可以作为环境障碍物,机械臂规划路径时会主动避开有octomap地图的地方。官网配置

 

http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/src/doc/perception_configuration.html,其中用到了moveit的组件 Occupancy Map Updater,Occupancy Map Updater 接受两种数据:

 

  • The PointCloud Occupany Map Updater: which can take as input point clouds (sensor_msgs/PointCloud2)
  • The Depth Image Occupancy Map Updater: which can take as input Depth Images (sensor_msgs/Image)

 

1.和之前配置moveit控制器的时候的套路是类似的,找到redwall_arm_moveit_config包中的config文件夹(官方使用的是PR2包,或者直接使用自己的包),新建一个sensors_3d.yaml(文件名随意),写入如下内容:

 

# The name of this file shouldn't be changed, or else the Setup Assistant won't detect it
sensors:
   - sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater
     point_cloud_topic: /camera/depth/color/points
     max_range: 5.0
     frame_subsample: 1
     point_subsample: 1

 

2021,1月更新:上面的sensor配置可以展示出效果,但是会出现一个问题,那就是八叉树地图将机械臂的位置也当成了障碍物,所以应该设定一个机械臂的范围,修改的配置如下:

 

sensors:
   - sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater
     point_cloud_topic: /camera/depth/color/points
     max_range: 5.0
     frame_subsample: 1
     point_subsample: 1
     padding_offset: 0.1
     padding_scale: 1.0
     max_update_rate: 1.0
     filtered_cloud_topic: filtered_cloud

 

和官方的配置有所不同,因为我是用的是realsense深度传感器,可在话题/camera/depth/color/points上发布点云信息,如果你使用的是其他公司的RGBD相机,可用参考官方的深度相机配置方法:

 

sensors:
  - sensor_plugin: occupancy_map_monitor/DepthImageOctomapUpdater
    image_topic: /head_mount_kinect/depth_registered/image_raw
    queue_size: 5
    near_clipping_plane_distance: 0.3
    far_clipping_plane_distance: 5.0
    shadow_threshold: 0.2
    padding_scale: 4.0
    padding_offset: 0.03
    filtered_cloud_topic: filtered_cloud

 

2.填写launch文件夹下的redwall_arm_moveit_sensor_manager.launch.xml,在launch目录下,有两个与sensor相关的launch文件,一个是sensor_manager.launch.xml,该文件是moveit生成配置文件后自动生成好的。另一个是XXX_moveit_sensor_manager.launch.xml文件,这也是自动生成好的,只不过是个空的launch文件,需要填写以下内容。

 

<launch>    
   <param name="camera_link" type="string" value="odom_combined" /> 
   <param name="octomap_resolution" type="double" value="0.05" />                           
   <param name="max_range" type="double"  value="5.0" />    
   <rosparam command="load" file="$(find redwall_arm_moveit_config)/config/sensors_3d.yaml" /> 
</launch>

 

第一个参数是你想要将八叉树地图发布在那个坐标系,我的发布在camera_link,其余两个参数就是和八叉树地图的分辨率有关了,据说这个分辨率太大,可能都是地图无法加载显示,反正我没有遇到这个问题。最后一个参数加载的就是上面配置的sensors_3d.yaml了。

 

3.由于现在还是在疫情阶段,还没有进行手眼标定,无法确定相机坐标系和世界坐标系的坐标变换,所以简单修改realsense包中的demo_pointcloud.launch文件,将RViz注释掉,添加一个camera_link到base_link的静态坐标变换。

 

<launch>
  <arg name="serial_no"             default=""/>
  <arg name="json_file_path"        default=""/>
  <arg name="camera"                default="camera"/>
 
  <group ns="$(arg camera)">
    <include file="$(find realsense2_camera)/launch/includes/nodelet.launch.xml">
      <arg name="serial_no"         value="$(arg serial_no)"/>
      <arg name="json_file_path"    value="$(arg json_file_path)"/>
      <arg name="depth_width"       value="640"/>
      <arg name="depth_height"      value="480"/>
      <arg name="depth_fps"         value="30"/>
      <arg name="color_width"       value="640"/>
      <arg name="color_height"      value="480"/>
      <arg name="color_fps"         value="30"/>
      <arg name="enable_depth"      value="true"/>
      <arg name="enable_color"      value="true"/>
      <arg name="enable_infra1"     value="false"/>
      <arg name="enable_infra2"     value="false"/>
      <arg name="enable_fisheye"    value="false"/>
      <arg name="enable_gyro"       value="false"/>
      <arg name="enable_accel"      value="false"/>
      <arg name="enable_pointcloud" value="true"/>
      <arg name="enable_sync"       value="true"/>
      <arg name="tf_prefix"         value="$(arg camera)"/>
    </include>
 
<!--    <node name="rviz" pkg="rviz" type="rviz" args="-d $(find realsense2_camera)/rviz/pointcloud.rviz" required="true" />-->
  </group>
  <node pkg="tf" type="static_transform_publisher" name="link1_broadcaster" args="1 0 0 0 0 0 1 base_link camera_link 100" />
</launch>

 

4.接下来就是启动节点,连上深度相机,查看效果了:

 

# 启动相机节点发布点云数据
$ roslaunch realsense2_camera demo_pointcloud.launch
 
 
# 启动moveit
$ roslaunch redwall_arm_moveit_config demo.launch
 
# 查看坐标变换
$ rosrun rqt_tf_tree rqt_tf_tree 

 

通过ROS控制真实机械臂(18) — 构建 octocmap 用于碰撞检测和避障插图(4)

 

通过ROS控制真实机械臂(18) — 构建 octocmap 用于碰撞检测和避障插图(5)

 

发表评论

后才能评论