相机标定

作为t265而言,虽然官方提供了标定的出厂内参rs-enumerate-devices -c可以获得,但是我们在vins和orbslam中仍然有可能需要自己标定数据,这里给出教程。

首先我们要明确适用的模型,一般普通相机小孔模型即可,而鱼眼镜头则是适用KB4(Kannala-Brandt Camera Model)或者Mei模型

目前可以用kalibr或者vins-fusion里面的camera-calibration 也可以用basalt。首先我们需要明确basalt必须使用AprilTag,而kalibr则是可以使用AprilTag、Checkerboard、Crilegrid这三种标定板

下面我们将从kalibr 和 basalt来实现标定操作

kalibr

首先安装依赖库

sudo apt-get install python-setuptools
sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen
sudo apt-get install ros-kinetic-vision-opencv ros-kinetic-image-transport-plugins ros-kinetic-cmake-modules python-software-properties software-properties-common libpoco-dev python-matplotlib python-scipy python-git python-pip ipython libtbb-dev libblas-dev liblapack-dev python-catkin-tools libv4l-dev

接下来安装kalibr

cd ~/catkin_ws/src
git clone https://github.com/ethz-asl/Kalibr.git
cd ..
catkin_make
source ~/catkin_ws/devel/setup.bash

在看其他博客时发现可能会出现python相关的问题,我用的是ubuntu16.04自带的Python 2.7.12版本,在安装过程中没有出现问题。

下载官方给的april_6x6_80x80cm_A0.pdf或者其它标定文件。打印或者在屏幕显示,测量实际的尺寸后,在你之前新建的文件夹中新建apriltags.yaml,我的文件内容如下:

target_type: 'aprilgrid' #gridtype
tagCols: 6               #number of apriltags
tagRows: 6               #number of apriltags
tagSize: 0.16           #size of apriltag, edge to edge [m]
tagSpacing: 0.3125         #ratio of space between tags to tagSize
                         #example: tagSize=2m, spacing=0.5m --> tagSpacing=0.25[-]

之后,在你新建的文件夹中打开终端,开启realsenseT265

roslaunch realsense2_camera rs_t265.launch

修改话题发布频率

rosrun topic_tools throttle messages /camera/fisheye2/image_raw 10.0 /fisheye2
rosrun topic_tools throttle messages /camera/fisheye1/image_raw 10.0 /fisheye1

录制文件,注意录制过程中要缓慢移动相机,使其能看到完整清晰的标定文件(可以先在录制前打开rviz,调用image的话题进行观察,判断移动的位置)

rosbag record -O cameras_calibration /fisheye1 /fisheye2

在录制好后使用下面的指令输出

kalibr_calibrate_cameras --target ~/cal/apriltags.yaml --bag  ~/cal/cameras_calibration.bag --models omni-radtan omni-radtan --topics /fisheye1 /fisheye2


basalt_calibrate --dataset-path ~/cal/cameras_calibration.bag --dataset-type bag --aprilgrid ~/cal/apriltags.json --result-path ~/cal/ --cam-types ds ds ds ds

此外可以参考(https://blog.csdn.net/lemonxiaoxiao/article/details/109369181、https://blog.csdn.net/HUST_lc/article/details/96144499)这两篇文章。

IMU标定,以及联合标定

basalt

首先我们将会创建一个名为apriltags.json

{
  "target_type": "checkerboard",
  "tagCols": 11,
  "tagRows": 8,
  "tagSize": 0.03,
  "tagSpacing": 0.3
}

之后,在你新建的文件夹中打开终端,开启realsenseT265

roslaunch realsense2_camera rs_t265.launch

修改话题发布频率

rosrun topic_tools throttle messages /camera/fisheye2/image_raw 10.0 /fisheye2
rosrun topic_tools throttle messages /camera/fisheye1/image_raw 10.0 /fisheye1

录制文件,注意录制过程中要缓慢移动相机,使其能看到完整清晰的标定文件(可以先在录制前打开rviz,调用image的话题进行观察,判断移动的位置)

rosbag record -O cameras_calibration /fisheye1 /fisheye2

在录制好后使用下面的指令输出(ds代表摄像头,有几个摄像头就有几个ds,ds是使用的模型,如果使用的是kb模型,则在后面填写kb4)

basalt_calibrate --dataset-path ~/cal/cameras_calibration.bag --dataset-type bag --aprilgrid ~/cal/apriltags.json --result-path ~/cal/ --cam-types ds ds

or

basalt_calibrate --dataset-path ~/cal/cameras_calibration.bag --dataset-type bag --aprilgrid ~/cal/apriltags.json --result-path ~/cal/t265 --cam-types kb4 kb4

然后即可标定
在这里插入图片描述

T265相机跑vins mono

目前网上的教程对T265的信息较少,而对于vins mono的使用则更少,为此我们针对vins mono来进行阐述
首先,我们需要先安装好VINS-Mono并且在数据集上正常工作
https://github.com/HKUST-Aerial-Robotics/VINS-Mono
在VINS-Fusion/config/realsence文件夹中,修改realsense_fisheye_config.yaml文件至如下:(具体修改可以参照文章

%YAML:1.0

#common parameters
imu_topic: "/camera/imu"
image_topic: "/camera/fisheye1/image_raw"
output_path: "~/output/"

#camera calibration 
model_type: KANNALA_BRANDT
camera_name: camera
image_width: 848
image_height: 800
projection_parameters:
   k2: -0.00484799
   k3: 0.0389167
   k4: -0.0367587
   k5: 0.00608432
   u0: 423.719
   v0: 404.247
   mu: 286.896
   mv: 286.717

# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 0   # 0  Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.
                        # 1  Have an initial guess about extrinsic parameters. We will optimize around your initial guess.
                        # 2  Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.                        
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
extrinsicRotation: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [ -0.999891,  -0.0104525,  0.0104421,
           0.0104582,  -0.999945,  0.000490038, 
           0.0104365,  0.000599191,  0.999945]
#Translation from camera frame to imu frame, imu^T_cam
extrinsicTranslation: !!opencv-matrix
   rows: 3
   cols: 1
   dt: d
   data: [0.0106988288462162,  -0.000111902991193347,  -0.000111670000478625]

#feature traker paprameters
max_cnt: 150            # max feature number in feature tracking
min_dist: 30            # min distance between two features 
freq: 10                # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 
F_threshold: 1.0        # ransac threshold (pixel)
show_track: 1           # publish tracking image as topic
equalize: 0             # if image is too dark or light, trun on equalize to find enough features
fisheye: 0              # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points

#optimization parameters
max_solver_time: 0.04  # max solver itration time (ms), to guarantee real time
max_num_iterations: 12   # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)

#imu parameters       The more accurate parameters you provide, the better performance
acc_n: 0.2          # accelerometer measurement noise standard deviation. #0.2   0.04
gyr_n: 0.05        # gyroscope measurement noise standard deviation.     #0.05  0.004
acc_w: 0.00004         # accelerometer bias random work noise standard deviation.  #0.02
gyr_w: 4.0e-5       # gyroscope bias random work noise standard deviation.     #4.0e-5
g_norm: 9.805    # gravity magnitude

#loop closure parameters
loop_closure: 1                    # start loop closure
fast_relocalization: 1             # useful in real-time and large project
load_previous_pose_graph: 0        # load and reuse previous pose graph; load from 'pose_graph_save_path'
pose_graph_save_path: "~/output/pose_graph/" # save and load path

#unsynchronization parameters
estimate_td: 0                      # online estimate time offset between camera and imu
td: 0.000                             # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)

#rolling shutter parameters
rolling_shutter: 0                  # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0               # unit: s. rolling shutter read out time per frame (from data sheet). 

#visualization parameters
save_image: 1                   # save image in pose graph for visualization prupose; you can close this function by setting 0 
visualize_imu_forward: 0        # output imu forward propogation to achieve low latency and high frequence results
visualize_camera_size: 0.4      # size of camera marker in RVIZ

之后打开终端,运行

roslaunch realsense2_camera rs_t265.launch 
roslaunch vins_estimator realsense_fisheye.launch 
roslaunch vins_estimator vins_rviz.launch

在这里插入图片描述