声明:本篇文章只是个人知识盲区、知识弱点、重点部分的归纳总结,望各位大佬不喜勿喷。梳理顺序是按照正点原子的视频和文档的实际顺序梳理,转载请注明出处。
作者:sumjess
适用:这个视频我已经看过3遍了,总会有忘记的,所以来写这本书的随手笔记,记录重点、易忘点。该博客可以当做字典,也可以当做笔记。
目前内容:GPIO的输入与输出  

一、GPIO基本结构:

二、GPIO工作方式:
u4种输入模式:输入浮空、输入上拉、输入下拉、模拟输入
u4种输出模式:开漏输出、开漏复用功能、推挽式输出、推挽式复用功能
u3种最大翻转速度: -2MHZ-10MHz -50MHz
(1) GPIO_Mode_AIN 模拟输入
(2) GPIO_Mode_IN_FLOATING 浮空输入
(3) GPIO_Mode_IPD 下拉输入
(4) GPIO_Mode_IPU 上拉输入
(5) GPIO_Mode_Out_OD 开漏输出
(6) GPIO_Mode_Out_PP 推挽输出
(7) GPIO_Mode_AF_OD 复用开漏输出
(8) GPIO_Mode_AF_PP 复用推挽输出
详细解释:
推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总
是在一个三极管导通的时候另一个截止。高低电平由 IC 的电源低定。
推挽电路是两个参数相同的三极管或 MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任
务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载
灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。
详细理解:

如图所示,推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电
流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出
任务。当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 VT3 拉
出。这样一来,输出高低电平时, VT3 一路和 VT5 一路将交替工作,从而减低了功耗,提高了每个管的
承受能力。又由于不论走哪一路,管子导通电阻都很小,使 RC 常数很小,转变速度很快。因此,推拉式
输出级既提高电路的负载能力,又提高开关速度。
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,
其吸收电流的能力相对强(一般 20ma 以内).
开漏形式的电路有以下几个特点:
1. 利用外部电路的驱动能力,减少 IC 内部的驱动。当 IC 内部 MOSFET 导通时,驱动电流是从外部的
VCC 流经 R pull-up , MOSFET 到 GND。 IC 内部仅需很下的栅极驱动电流。
2. 一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,
只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变
上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供 TTL/CMOS 电平输出等。(上拉
电阻的阻值决定了逻辑电平转换的沿的速度 。阻值越大,速度越低功耗越小, 所以负载电阻的选择要兼顾
功耗和速度。 )
3. OPEN-DRAIN 提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通
过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如
果对延时有要求,则建议用下降沿输出。
4. 可以将多个开漏输出的 Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成
“与逻辑”关系。这也是 I2C, SMBus 等总线判断总线占用状态的原理。补充:什么是“线与”?:
在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 NMOS 晶体管的集电
极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)
就被拉到地线电平上. 因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS),晶体管就会
饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相
器, 就是或 OR 逻辑.
其实可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑 0,相当
于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为 0,只有都为高电平时,与
的结果才为逻辑 1。
关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:

该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的 PNP 三极管截止,而上面 NPN 三极
管导通,输出电平 VS+;当比较器输出低电平时则恰恰相反, PNP 三极管导通,输出和地相连,为低电
平。右边的则可以理解为开漏输出形式,需要接上拉。
浮空输入:对于浮空输入,一直没找到很权威的解释,只好从以下图中去理解了

由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下, IO 的电平
状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。
上拉输入

下拉输入

模拟输入

复用开漏输出、复用推挽输出:可以理解为 GPIO 口被用作第二功能时的配置情况(即并非作为通用 IO
口使用)

最后总结下使用情况


在 STM32 中选用 IO 模式
(1) 浮空输入_IN_FLOATING ——浮空输入,可以做 KEY 识别, RX1
(2)带上拉输入_IPU——IO 内部上拉电阻输入
(3)带下拉输入_IPD—— IO 内部下拉电阻输入
(4) 模拟输入_AIN ——应用 ADC 模拟输入,或者低功耗下省电
(5)开漏输出_OUT_OD ——IO 输出 0 接 GND, IO 输出 1,悬空,需要外接上拉电阻,才能实现输出
高电平。当输出为 1 时, IO 口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样 IO 口也就可以
由外部电路改变为低电平或不变。可以读 IO 输入电平变化,实现 C51 的 IO 双向功能
(6)推挽输出_OUT_PP ——IO 输出 0-接 GND, IO 输出 1 -接 VCC,读输入值是未知的
(7)复用功能的推挽输出_AF_PP ——片内外设功能(I2C 的 SCL,SDA)
(8)复用功能的开漏输出_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS)


STM32 设置实例:

(1)模拟 I2C 使用开漏输出_OUT_OD,接上拉电阻,能够正确输出 0 和 1;读值时先
GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以读 IO 的值;使用
GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);
(2)如果是无上拉电阻, IO 默认是高电平;需要读取 IO 的值,可以使用带上拉输入_IPU 和浮空输入
_IN_FLOATING 和开漏输出_OUT_OD;
通常有 5 种方式使用某个引脚功能,它们的配置方式如下:
1)作为普通 GPIO 输入:根据需要配置该引脚为浮空输入、 带弱上拉输入或带弱下拉输入,同时不要使能
该引脚对应的所有复用功能模块。
2)作为普通 GPIO 输出:根据需要配置该引脚为推挽输出或开漏输出,同时不要使能该引脚对应的所有复
用功能模块。
3)作为普通模拟输入:配置该引脚为模拟输入模式,同时不要使能该引脚对应的所有复用功能模块。
4)作为内置外设的输入:根据需要配置该引脚为浮空输入、 带弱上拉输入或带弱下拉输入,同时使能该引
脚对应的某个复用功能模块。
5)作为内置外设的输出:根据需要配置该引脚为复用推挽输出或复用开漏输出,同时使能该引脚对应的所有复用功能模块。
 

注意事项:

注意如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。
stm32 复位后,IO 端口处于输入浮空状态.
JTAG 引脚复位以后,处于上拉或者下拉状态

所有 IO 端口都具有外部中断能力,端口必须配置成输入模式,才能使用外部中断功能.
IO 端口复用功能配置:
对于复用功能输入,端口可以配置成任意输入模式或者复用功能输出模式.
对于复用功能输出,端口必须配置成复用功能输出
对于双向复用功能,端口必须配置成复用功能输出
stm32 的部分 IO 端口的复用功能可以重新映射成另外的复用功能.
stm32 具有 GPIO 锁定机制,即锁定 GPIO 配置,下次复位前不能再修改.
当 LSE 振荡器关闭时,OSC32_IN 和 OSC32_OUT 可以用作通用 IO PC14 和 PC15.
当进入待机模式或者备份域由 Vbat 供电,PC14,PC15 功能丢失,该两个 IO 口线设置为模拟输入功能.
OSC_IN 和 OSC_OUT 可以重新映射为 GPIO PD0,PD1.
注意 PD0,PD1 用于输出地时候仅能用于 50MHz 输出模式.
注意:PC13,PC14,PC15 只能用于 2MHz 的输出模式,,最多只能带 30pf 的负载,并且同时只能使用一个引
脚!!!!!!!!
 

三、GPIO相关配置寄存器
每组GPIO端口的寄存器包括:

两个32位配置寄存器(GPIOx_CRL ,GPIOx_CRH) ,

两个32位数据寄存器 (GPIOx_IDR和GPIOx_ODR),

一个32位置位/ 复位寄存器(GPIOx_BSRR),

一个16位复位寄存器(GPIOx_BRR),

一个32位锁定寄存器(GPIOx_LCKR)。

每个I/O端口位可以自由编程,然而I/O端口寄存器必须按32位字被访问(不允许半字或字节访问) 。

是每组IO口含下面7个寄存器。也就是7个寄存器,

一共可以控制一组GPIO的16个IO口。

       -  GPIOx_CRL :端口配置低寄存器

        - GPIOx_CRH:端口配置高寄存器

        - GPIOx_IDR:端口输入寄存器

        - GPIOx_ODR:端口输出寄存器

        - GPIOx_BSRR:端口位设置/清除寄存器

        - GPIOx_BRR :端口位清除寄存器

        - GPIOx_LCKR:端口配置锁存寄存器

(1)端口配置低寄存器(GPIOx_CRL)


2)端口配置低寄存器(GPIOx_CRL)

(3)端口配置高寄存器(GPIOx_CRH)

(4)端口输入数据寄存器(GPIOx_IDR)

(5)端口输出数据寄存器(GPIOx_ODR)

(6)端口输出数据寄存器(GPIOx_ODR)

(7)端口位设置/清除寄存器(GPIOx_BSRR)

(8)端口位清除寄存器(GPIOx_BRR)

四、STM32引脚说明:

u端口复用功能

   STM32的大部分端口都具有复用功能。

   所谓复用,就是一些端口不仅仅可以做为通用IO口,还可以复用为一

   些外设引脚,比如PA9,PA10可以复用为STM32的串口1引脚。

  作用:最大限度的利用端口资源

u端口重映射功能

   就是可以把某些功能引脚映射到其他引脚。

   比如串口1默认引脚是PA9,PA10可以通过配置重映射映

    射到PB6,PB7

   作用:方便布线

u所有IO口都可以作为中断输入

 

五、按键部分电路说明: