前言

     手写字体识别模型LeNet5诞生于1994年,是最早的卷积神经网络之一。LeNet5通过巧妙的设计,利用卷积、参数共享、池化等操作提取特征,避免了大量的计算成本,最后再使用全连接神经网络进行分类识别,这个网络也是最近大量神经网络架构的起点。

        卷积或池化输出图像尺寸的计算公式如下:

        O=输出图像的尺寸;I=输入图像的尺寸;K=池化或卷积层的核尺寸;S=移动步长;P =填充数 

1、net.py

import torch 
from torch import nn
 
# 定义一个网络模型类
class MyLeNet5(nn.Module):
    # 初始化网络
    def __init__(self):
        super(MyLeNet5, self).__init__()
        # 输入大小为32*32,输出大小为28*28,输入通道为1,输出为6,卷积核为5
        self.c1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2)
        # 使用sigmoid激活函数
        self.Sigmoid = nn.Sigmoid()
        # 使用平均池化
        self.s2 = nn.AvgPool2d(kernel_size=2, stride=2)
        self.c3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        self.s4 = nn.AvgPool2d(kernel_size=2, stride=2)
        self.c5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
 
        self.flatten = nn.Flatten()
        self.f6 = nn.Linear(120, 84)
        self.output = nn.Linear(84, 10)
 
    def forward(self, x):
        # x输入为32*32*1, 输出为28*28*6
        x = self.Sigmoid(self.c1(x))
        # x输入为28*28*6, 输出为14*14*6
        x = self.s2(x)
        # x输入为14*14*6, 输出为10*10*16
        x = self.Sigmoid(self.c3(x))
        # x输入为10*10*16, 输出为5*5*16
        x = self.s4(x)
        # x输入为5*5*16, 输出为1*1*120
        x = self.c5(x)
        x = self.flatten(x)
        # x输入为120, 输出为84
        x = self.f6(x)
        # x输入为84, 输出为10
        x = self.output(x)
        return x
 
if __name__ == "__main__":
    x = torch.rand([1, 1, 28, 28])
    model = MyLeNet5()
    y = model(x)

2、train.py

import torch
from torch import nn
from net import MyLeNet5
from torch.optim import lr_scheduler
from torchvision import datasets, transforms
import os
 
 
# 将数据转化为tensor格式
data_transform = transforms.Compose([
    transforms.ToTensor()
])
 
# 加载训练数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_transform, download=True)
# 给训练集创建一个数据加载器, shuffle=True用于打乱数据集,每次都会以不同的顺序返回。
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
# 加载训练数据集
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_transform, download=True)
# 给训练集创建一个数据加载器, shuffle=True用于打乱数据集,每次都会以不同的顺序返回。
test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=16, shuffle=True)
 
# 如果显卡可用,则用显卡进行训练
device = "cuda" if torch.cuda.is_available() else 'cpu'
 
# 调用net里面定义的模型,如果GPU可用则将模型转到GPU
model = MyLeNet5().to(device)
 
# 定义损失函数(交叉熵损失)
loss_fn = nn.CrossEntropyLoss()
 
# 定义优化器,SGD,
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)
 
# 学习率每隔10epoch变为原来的0.1
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
 
# 定义训练函数
def train(dataloader, model, loss_fn, optimizer):
    loss, current, n = 0.0, 0.0, 0
    # enumerate返回为数据和标签还有批次
    for batch, (X, y) in enumerate(dataloader):
        # 前向传播
        X, y = X.to(device), y.to(device)
        output = model(X)
        cur_loss = loss_fn(output, y)
        # torch.max返回每行最大的概率和最大概率的索引,由于批次是16,所以返回16个概率和索引
        _, pred = torch.max(output, axis=1)
 
        # 计算每批次的准确率, output.shape[0]为该批次的多少
        cur_acc = torch.sum(y == pred) / output.shape[0]
        # print(cur_acc)
        # 反向传播
        optimizer.zero_grad()
        cur_loss.backward()
        optimizer.step()
        # 取出loss值和精度值
        loss += cur_loss.item()
        current += cur_acc.item()
        n = n + 1
 
    print('train_loss' + str(loss / n))
    print('train_acc' + str(current / n))
 
# 定义验证函数
def val(dataloader, model, loss_fn):
    # 将模型转为验证模式
    model.eval()
    loss, current, n = 0.0, 0.0, 0
    # 非训练,推理期用到(测试时模型参数不用更新, 所以no_grad)
    # print(torch.no_grad)
    with torch.no_grad():
        for batch, (X, y) in enumerate(dataloader):
            X, y = X.to(device), y.to(device)
            output = model(X)
            cur_loss = loss_fn(output, y)
            _, pred = torch.max(output, axis=1)
            cur_acc = torch.sum(y == pred) / output.shape[0]
            loss += cur_loss.item()
            current += cur_acc.item()
            n = n + 1
        print('val_loss' + str(loss / n))
        print('val_acc' + str(current / n))
 
        return current/n
 
# 开始训练
epoch = 50
min_acc = 0
for t in range(epoch):
    lr_scheduler.step()
    print(f"epoch{t+1}\n-------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    a = val(test_dataloader, model, loss_fn)
    # 保存最好的模型权重文件
    if a > min_acc:
        folder = 'sava_model'
        if not os.path.exists(folder):
            os.mkdir('sava_model')
        min_acc = a
        print('save best model', )
        torch.save(model.state_dict(), "sava_model/best_model.pth")
    # 保存最后的权重文件   
    if t == epoch - 1:
        torch.save(model.state_dict(), "sava_model/last_model.pth")
print('Done!')

 3、test.py

import torch
from net import MyLeNet5
from torch.autograd import Variable
from torchvision import datasets, transforms
from torchvision.transforms import ToPILImage
 
# 将数据转化为tensor格式
data_transform = transforms.Compose([
    transforms.ToTensor()
])
 
# 加载训练数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_transform, download=True)
# 给训练集创建一个数据加载器, shuffle=True用于打乱数据集,每次都会以不同的顺序返回。
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
# 加载训练数据集
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_transform, download=True)
# 给训练集创建一个数据加载器, shuffle=True用于打乱数据集,每次都会以不同的顺序返回。
test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=16, shuffle=True)
 
#  如果显卡可用,则用显卡进行训练
device = "cuda" if torch.cuda.is_available() else 'cpu'
 
# 调用net里面定义的模型,如果GPU可用则将模型转到GPU
model = MyLeNet5().to(device)
 
# 加载 train.py 里训练好的模型
model.load_state_dict(torch.load("D:/PycharmProjects/pytorch_test/LeNet-5/sava_model/best_model.pth"))
 
# 获取预测结果
classes = [
    "0",
    "1",
    "2",
    "3",
    "4",
    "5",
    "6",
    "7",
    "8",
    "9",
]
 
# 把tensor转成Image, 方便可视化
show = ToPILImage()
 
# 进入验证阶段
model.eval()
# 对test_dataset里10000张手写数字图片进行推理
for i in range(len(test_dataloader)):
    x, y = test_dataset[i][0], test_dataset[i][1]
    # tensor格式数据可视化
    show(x).show()
    # 扩展张量维度为4维
    x = Variable(torch.unsqueeze(x, dim=0).float(), requires_grad=False).to(device)
    with torch.no_grad():
        pred = model(x)
        # 得到预测类别中最高的那一类,再把最高的这一类对应classes中的哪一类标签
        predicted, actual = classes[torch.argmax(pred[0])], classes[y]
        # 最终输出的预测值与真实值
        print(f'predicted: "{predicted}", actual:"{actual}"')