在前四篇里面我们讲到了SVM的线性分类和非线性分类,以及在分类时用到的算法。这些都关注与SVM的分类问题。实际上SVM也可以用于回归模型,本篇就对如何将SVM用于回归模型做一个总结。重点关注SVM分类和SVM回归的相同点与不同点。

1. SVM回归模型的损失函数度量

 总结下,我们的SVM回归模型的损失函数度量为:

2. SVM回归模型的目标函数的原始形式

 上一节我们已经得到了我们的损失函数的度量,现在可以可以定义我们的目标函数如下:

3. SVM回归模型的目标函数的对偶形式

 上一节我们讲到了SVM回归模型的目标函数的原始形式,我们的目标是

 对目标函数取负号,求最小值可以得到和SVM分类模型类似的求极小值的目标函数如下:

4. SVM回归模型系数的稀疏性

5. SVM 算法小结

这个系列终于写完了,这里按惯例SVM 算法做一个总结。SVM算法是一个很优秀的算法,在集成学习和神经网络之类的算法没有表现出优越性能前,SVM基本占据了分类模型的统治地位。目前则是在大数据时代的大样本背景下,SVM由于其在大样本时超级大的计算量,热度有所下降,但是仍然是一个常用的机器学习算法。

    SVM算法的主要优点有:

    1) 解决高维特征的分类问题和回归问题很有效,在特征维度大于样本数时依然有很好的效果。

    2) 仅仅使用一部分支持向量来做超平面的决策,无需依赖全部数据。

    3) 有大量的核函数可以使用,从而可以很灵活的来解决各种非线性的分类回归问题。

    4)样本量不是海量数据的时候,分类准确率高,泛化能力强。

    SVM算法的主要缺点有:

    1) 如果特征维度远远大于样本数,则SVM表现一般。

    2) SVM在样本量非常大,核函数映射维度非常高时,计算量过大,不太适合使用。

    3)非线性问题的核函数的选择没有通用标准,难以选择一个合适的核函数。

    4)SVM对缺失数据敏感。

    之后会对scikit-learn中SVM的分类算法库和回归算法库做一个总结,重点讲述调参要点,敬请期待。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com) 

\xi_i^{*}