在SVM的前三篇里,我们优化的目标函数最终都是一个关于α向量的函数。而怎么极小化这个函数,求出对应的α向量,进而求出分离超平面我们没有讲。本篇就对优化这个关于α向量的函数的SMO算法做一个总结。

1. 回顾SVM优化目标函数

    我们首先回顾下我们的优化目标函数:

2. SMO算法的基本思想

3. SMO算法目标函数的优化

    为了求解上面含有这两个变量的目标优化问题,我们首先分析约束条件,所有的α1,α2都要满足约束条件,然后在约束条件下求最小。

    根据上面的约束条件α1y1+α2y2=ς0αiCi=1,2,又由于均只能取值1或者-1, 这样在[0,C]和[0,C]形成的盒子里面,并且两者的关系直线的斜率只能为1或者-1,也就是说α1,α2的关系直线平行于[0,C]和[0,C]形成的盒子的对角线,如下图所示:

4. SMO算法两个变量的选择

    SMO算法需要选择合适的两个变量做迭代,其余的变量做常量来进行优化,那么怎么选择这两个变量呢?

4.1 第一个变量的选择

    SMO算法称选择第一个变量为外层循环,这个变量需要选择在训练集中违反KKT条件最严重的样本点。对于每个样本点,要满足的KKT条件我们在第一节已经讲到了: 

    一般来说,我们首先选择违反0<αi<Cyig(xi)=1这个条件的点。如果这些支持向量都满足KKT条件,再选择违反αi=0yig(xi)1 和 αi=Cyig(xi)1的点。

4.2 第二个变量的选择

     SMO算法称选择第二一个变量为内层循环,假设我们在外层循环已经找到了α1, 第二个变量α2的选择标准是让|E1E2|有足够大的变化。由于α1定了的时候,E1也确定了,所以要想|E1E2|最大,只需要在为正时,选择最小的作为E1为负时,选择最大的Ei作为,可以将所有的保存下来加快迭代。

    如果内存循环找到的点不能让目标函数有足够的下降, 可以采用遍历支持向量点来做,直到目标函数有足够的下降, 如果所有的支持向量做都不能让目标函数有足够的下降,可以跳出循环,重新选择 

4.3 计算阈值b和差值

. SMO算法总结

    输入是m个样本(x1,y1),(x2,y2),...,(xm,ym),,其中x为n维特征向量。y为二元输出,值为1,或者-1.精度e。

    输出是近似解α

    1)取初值

    2)按照4.1节的方法选择α1k,接着按照4.2节的方法选择α2k,求出新的

 SMO算法终于写完了,这块在以前学的时候是非常痛苦的,不过弄明白就豁然开朗了。希望大家也是一样。写完这一篇, SVM系列就只剩下支持向量回归了,胜利在望!