书中程序适用于turtlebot、husky等多种机器人,配置相似都可以用的。

支持ROS2版本foxy、humble。

基础检测效果如下:




由于缺¥,所有设备都非常老旧,都是其他实验室淘汰或者拼凑出来的设备。机器人控制笔记本是2010年版本。




但是依然可以跑ROS1、ROS2。

book_ros2/br2_tf2_detector目录:





  1. .
    ├── CMakeLists.txt
    ├── include
    │   └── br2_tf2_detector
    │       ├── ObstacleDetectorImprovedNode.hpp
    │       ├── ObstacleDetectorNode.hpp
    │       └── ObstacleMonitorNode.hpp
    ├── launch
    │   ├── detector_basic.launch.py
    │   ├── detector_improved.launch.py
    │   ├── turtlebot_detector_basic.launch.py
    │   └── turtlebot_detector_improved.launch.py
    ├── package.xml
    └── src
        ├── br2_tf2_detector
        │   ├── ObstacleDetectorImprovedNode.cpp
        │   ├── ObstacleDetectorNode.cpp
        │   ├── ObstacleMonitorNode (copy).cpp
        │   └── ObstacleMonitorNode.cpp
        ├── detector_improved_main.cpp
        └── detector_main.cpp
     
    5 directories, 15 files

里面有两个部分basic和improved。

CMakelist(lib):


    1. cmake_minimum_required(VERSION 3.5)
      project(br2_tf2_detector)
       
      set(CMAKE_CXX_STANDARD 17)
       
      # find dependencies
      find_package(ament_cmake REQUIRED)
      find_package(rclcpp REQUIRED)
      find_package(tf2_ros REQUIRED)
      find_package(geometry_msgs REQUIRED)
      find_package(sensor_msgs REQUIRED)
      find_package(visualization_msgs REQUIRED)
       
      set(dependencies
          rclcpp
          tf2_ros
          geometry_msgs
          sensor_msgs
          visualization_msgs
      )
       
      include_directories(include)
       
      add_library(${PROJECT_NAME} SHARED
        src/br2_tf2_detector/ObstacleDetectorNode.cpp
        src/br2_tf2_detector/ObstacleMonitorNode.cpp
        src/br2_tf2_detector/ObstacleDetectorImprovedNode.cpp
      )
      ament_target_dependencies(${PROJECT_NAME} ${dependencies})
       
      add_executable(detector src/detector_main.cpp)
      ament_target_dependencies(detector ${dependencies})
      target_link_libraries(detector ${PROJECT_NAME})
       
      add_executable(detector_improved src/detector_improved_main.cpp)
      ament_target_dependencies(detector_improved ${dependencies})
      target_link_libraries(detector_improved ${PROJECT_NAME})
       
      install(TARGETS
        ${PROJECT_NAME}
        detector
        detector_improved
        ARCHIVE DESTINATION lib
        LIBRARY DESTINATION lib
        RUNTIME DESTINATION lib/${PROJECT_NAME}
      )
       
      install(DIRECTORY launch DESTINATION share/${PROJECT_NAME})
       
      if(BUILD_TESTING)
        find_package(ament_lint_auto REQUIRED)
        ament_lint_auto_find_test_dependencies()
      endif()
       
      ament_package()

障碍物识别节点


    1. // Copyright 2021 Intelligent Robotics Lab
      //
      // Licensed under the Apache License, Version 2.0 (the "License");
      // you may not use this file except in compliance with the License.
      // You may obtain a copy of the License at
      //
      //     http://www.apache.org/licenses/LICENSE-2.0
      //
      // Unless required by applicable law or agreed to in writing, software
      // distributed under the License is distributed on an "AS IS" BASIS,
      // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      // See the License for the specific language governing permissions and
      // limitations under the License.
       
      #include <memory>
       
      #include "br2_tf2_detector/ObstacleDetectorNode.hpp"
       
      #include "sensor_msgs/msg/laser_scan.hpp"
      #include "geometry_msgs/msg/transform_stamped.hpp"
       
      #include "rclcpp/rclcpp.hpp"
       
      namespace br2_tf2_detector
      {
       
      using std::placeholders::_1;
       
      ObstacleDetectorNode::ObstacleDetectorNode()
      : Node("obstacle_detector")
      {
        scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
          "input_scan", rclcpp::SensorDataQoS(),
          std::bind(&ObstacleDetectorNode::scan_callback, this, _1));
       
        tf_broadcaster_ = std::make_shared<tf2_ros::StaticTransformBroadcaster>(*this);
      }
       
      void
      ObstacleDetectorNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
      {
        double dist = msg->ranges[msg->ranges.size() / 2];
       
        if (!std::isinf(dist)) {
          geometry_msgs::msg::TransformStamped detection_tf;
       
          detection_tf.header = msg->header;
          detection_tf.child_frame_id = "detected_obstacle";
          detection_tf.transform.translation.x = msg->ranges[msg->ranges.size() / 2];
       
          tf_broadcaster_->sendTransform(detection_tf);
        }
      }
       
      }  // namespace br2_tf2_detector

主要就是回调函数完成大部分功能。具体参考源代码即可。

障碍物监控节点:


  1. // Copyright 2021 Intelligent Robotics Lab
    //
    // Licensed under the Apache License, Version 2.0 (the "License");
    // you may not use this file except in compliance with the License.
    // You may obtain a copy of the License at
    //
    //     http://www.apache.org/licenses/LICENSE-2.0
    //
    // Unless required by applicable law or agreed to in writing, software
    // distributed under the License is distributed on an "AS IS" BASIS,
    // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    // See the License for the specific language governing permissions and
    // limitations under the License.
     
    #include <tf2/transform_datatypes.h>
    #include <tf2/LinearMath/Quaternion.h>
    #include <tf2_geometry_msgs/tf2_geometry_msgs.h>
     
    #include <memory>
     
    #include "br2_tf2_detector/ObstacleMonitorNode.hpp"
     
    #include "geometry_msgs/msg/transform_stamped.hpp"
     
    #include "rclcpp/rclcpp.hpp"
     
    namespace br2_tf2_detector
    {
     
    using namespace std::chrono_literals;
     
    ObstacleMonitorNode::ObstacleMonitorNode()
    : Node("obstacle_monitor"),
      tf_buffer_(),
      tf_listener_(tf_buffer_)
    {
      marker_pub_ = create_publisher<visualization_msgs::msg::Marker>("obstacle_marker", 1);
     
      timer_ = create_wall_timer(
        500ms, std::bind(&ObstacleMonitorNode::control_cycle, this));
    }
     
    void
    ObstacleMonitorNode::control_cycle()
    {
      geometry_msgs::msg::TransformStamped robot2obstacle;
     
      try {
        robot2obstacle = tf_buffer_.lookupTransform(
          "odom", "detected_obstacle", tf2::TimePointZero);
      } catch (tf2::TransformException & ex) {
        RCLCPP_WARN(get_logger(), "Obstacle transform not found: %s", ex.what());
        return;
      }
     
      double x = robot2obstacle.transform.translation.x;
      double y = robot2obstacle.transform.translation.y;
      double z = robot2obstacle.transform.translation.z;
      double theta = atan2(y, x);
     
      RCLCPP_INFO(
        get_logger(), "Obstacle detected at (%lf m, %lf m, , %lf m) = %lf rads",
        x, y, z, theta);
     
      visualization_msgs::msg::Marker obstacle_arrow;
      obstacle_arrow.header.frame_id = "odom";
      obstacle_arrow.header.stamp = now();
      obstacle_arrow.type = visualization_msgs::msg::Marker::ARROW;
      obstacle_arrow.action = visualization_msgs::msg::Marker::ADD;
      obstacle_arrow.lifetime = rclcpp::Duration(1s);
     
      geometry_msgs::msg::Point start;
      start.x = 0.0;
      start.y = 0.0;
      start.z = 0.0;
      geometry_msgs::msg::Point end;
      end.x = x;
      end.y = y;
      end.z = z;
      obstacle_arrow.points = {start, end};
     
      obstacle_arrow.color.r = 1.0;
      obstacle_arrow.color.g = 0.0;
      obstacle_arrow.color.b = 0.0;
      obstacle_arrow.color.a = 1.0;
     
      obstacle_arrow.scale.x = 0.02;
      obstacle_arrow.scale.y = 0.1;
      obstacle_arrow.scale.z = 0.1;
     
     
      marker_pub_->publish(obstacle_arrow);
    }
     
    }  // namespace br2_tf2_detector

代码和原始版本稍微有些不同。

重要部分:


  1.   try {
        robot2obstacle = tf_buffer_.lookupTransform(
          "odom", "detected_obstacle", tf2::TimePointZero);
      } catch (tf2::TransformException & ex) {
        RCLCPP_WARN(get_logger(), "Obstacle transform not found: %s", ex.what());
        return;
      }
     
      double x = robot2obstacle.transform.translation.x;
      double y = robot2obstacle.transform.translation.y;
      double z = robot2obstacle.transform.translation.z;
      double theta = atan2(y, x);
     
      RCLCPP_INFO(
        get_logger(), "Obstacle detected at (%lf m, %lf m, , %lf m) = %lf rads",
        x, y, z, theta);

如果tf不能正常工作,会报错Obstacle transform not found:

例如odom没有


  1. [detector-1] [WARN] [1676266943.177279939] [obstacle_monitor]: Obstacle transform not found: odom passed to lookupTransform argument target_frame does not exist.




例如detected_obstacle没有


  1. [detector-1] [WARN] [1676267019.166991316] [obstacle_monitor]: Obstacle transform not found: detected_obstacle passed to lookupTransform argument source_frame does not exist.




需要思考并解决问题哦^_^

如果都ok!那么”Obstacle detected at (%lf m, %lf m, , %lf m) = %lf rads”:




机器人在运动中所以角度和距离会不断变化。

此时如果查看:

rqt




其中检测tf是由激光传感器测距给出的。




节点主题图:




这个代码主程序!


  1. // Copyright 2021 Intelligent Robotics Lab
    //
    // Licensed under the Apache License, Version 2.0 (the "License");
    // you may not use this file except in compliance with the License.
    // You may obtain a copy of the License at
    //
    //     http://www.apache.org/licenses/LICENSE-2.0
    //
    // Unless required by applicable law or agreed to in writing, software
    // distributed under the License is distributed on an "AS IS" BASIS,
    // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    // See the License for the specific language governing permissions and
    // limitations under the License.
     
    #include <memory>
     
    #include "br2_tf2_detector/ObstacleDetectorNode.hpp"
    #include "br2_tf2_detector/ObstacleMonitorNode.hpp"
     
    #include "rclcpp/rclcpp.hpp"
     
    int main(int argc, char * argv[])
    {
      rclcpp::init(argc, argv);
     
      auto obstacle_detector = std::make_shared<br2_tf2_detector::ObstacleDetectorNode>();
      auto obstacle_monitor = std::make_shared<br2_tf2_detector::ObstacleMonitorNode>();
     
      rclcpp::executors::SingleThreadedExecutor executor;
      executor.add_node(obstacle_detector->get_node_base_interface());
      executor.add_node(obstacle_monitor->get_node_base_interface());
     
      executor.spin();
     
      rclcpp::shutdown();
      return 0;
    }

这里需要注意!


  1.   rclcpp::executors::SingleThreadedExecutor executor;
      executor.add_node(obstacle_detector->get_node_base_interface());
      executor.add_node(obstacle_monitor->get_node_base_interface());

如果C++掌握一般推荐看一看:

蓝桥ROS机器人之现代C++学习笔记7.1 并行基础

多线程是如何实现的。

整个程序要跑起来:

终端1-gazebo仿真:ros2 launch turtlebot3_gazebo empty_world.launch.py


    1. ros2 launch turtlebot3_gazebo empty_world.launch.py 
      [INFO] [launch]: All log files can be found below /home/zhangrelay/.ros/log/2023-02-13-13-43-10-244500-Aspire4741-10860
      [INFO] [launch]: Default logging verbosity is set to INFO
      urdf_file_name : turtlebot3_burger.urdf
      [INFO] [gzserver-1]: process started with pid [10862]
      [INFO] [gzclient   -2]: process started with pid [10864]
      [INFO] [ros2-3]: process started with pid [10868]
      [INFO] [robot_state_publisher-4]: process started with pid [10870]
      [robot_state_publisher-4] [WARN] [1676266991.467830827] [robot_state_publisher]: No robot_description parameter, but command-line argument available.  Assuming argument is name of URDF file.  This backwards compatibility fallback will be removed in the future.
      [robot_state_publisher-4] Parsing robot urdf xml string.
      [robot_state_publisher-4] Link base_link had 5 children
      [robot_state_publisher-4] Link caster_back_link had 0 children
      [robot_state_publisher-4] Link imu_link had 0 children
      [robot_state_publisher-4] Link base_scan had 0 children
      [robot_state_publisher-4] Link wheel_left_link had 0 children
      [robot_state_publisher-4] Link wheel_right_link had 0 children
      [robot_state_publisher-4] [INFO] [1676266991.472337172] [robot_state_publisher]: got segment base_footprint
      [robot_state_publisher-4] [INFO] [1676266991.472419811] [robot_state_publisher]: got segment base_link
      [robot_state_publisher-4] [INFO] [1676266991.472444636] [robot_state_publisher]: got segment base_scan
      [robot_state_publisher-4] [INFO] [1676266991.472465018] [robot_state_publisher]: got segment caster_back_link
      [robot_state_publisher-4] [INFO] [1676266991.472485972] [robot_state_publisher]: got segment imu_link
      [robot_state_publisher-4] [INFO] [1676266991.472505808] [robot_state_publisher]: got segment wheel_left_link
      [robot_state_publisher-4] [INFO] [1676266991.472525491] [robot_state_publisher]: got segment wheel_right_link
      [ros2-3] Set parameter successful
      [INFO] [ros2-3]: process has finished cleanly [pid 10868]
      [gzserver-1] [INFO] [1676266994.292818234] [turtlebot3_imu]: <initial_orientation_as_reference> is unset, using default value of false to comply with REP 145 (world as orientation reference)
      [gzserver-1] [INFO] [1676266994.417396256] [turtlebot3_diff_drive]: Wheel pair 1 separation set to [0.160000m]
      [gzserver-1] [INFO] [1676266994.417528534] [turtlebot3_diff_drive]: Wheel pair 1 diameter set to [0.066000m]
      [gzserver-1] [INFO] [1676266994.420616206] [turtlebot3_diff_drive]: Subscribed to [/cmd_vel]
      [gzserver-1] [INFO] [1676266994.425994254] [turtlebot3_diff_drive]: Advertise odometry on [/odom]
      [gzserver-1] [INFO] [1676266994.428920116] [turtlebot3_diff_drive]: Publishing odom transforms between [odom] and [base_footprint]
      [gzserver-1] [INFO] [1676266994.460852885] [turtlebot3_joint_state]: Going to publish joint [wheel_left_joint]
      [gzserver-1] [INFO] [1676266994.461009035] [turtlebot3_joint_state]: Going to publish joint [wheel_right_joint]
       

终端2-障碍物检测:

ros2 launch br2_tf2_detector turtlebot_detector_basic.launch.py

终端3-rqt:rqt

终端4-rviz2:rviz2







windows端也可以获取信息。

补充:

四元数是方向的4元组表示,它比旋转矩阵更简洁。四元数对于分析涉及三维旋转的情况非常有效。四元数广泛应用于机器人、量子力学、计算机视觉和3D动画。

可以在维基百科上了解更多关于基础数学概念的信息。还可以观看一个可探索的视频系列,将3blue1brown制作的四元数可视化。

官方教程将指导完成调试典型tf2问题的步骤。它还将使用许多tf2调试工具,如tf2_echo、tf2_monitor和view_frames。

TF2完整教程提纲:

tf2

许多tf2教程都适用于C++和Python。这些教程经过简化,可以完成C++曲目或Python曲目。如果想同时学习C++和Python,应该学习一次C++教程和一次Python教程。

目录

工作区设置

学习tf2

调试tf2

将传感器消息与tf2一起使用

工作区设置

如果尚未创建完成教程的工作空间,请遵循本教程。

学习tf2

tf2简介。

本教程将让了解tf2可以为您做什么。它在一个多机器人的例子中展示了一些tf2的力量,该例子使用了turtlesim。这还介绍了使用tf2_echo、view_frames和rviz。

编写静态广播(Python)(C++)。

本教程教如何向tf2广播静态坐标帧。

编写广播(Python)(C++)。

本教程教如何向tf2广播机器人的状态。

编写监听器(Python)(C++)。

本教程教如何使用tf2访问帧变换。

添加框架(Python)(C++)。

本教程教如何向tf2添加额外的固定帧。

使用时间(Python)(C++)。

本教程教使用lookup_transform函数中的超时来等待tf2树上的转换可用。

时间旅行(Python)(C++)。

本教程向介绍tf2的高级时间旅行功能。

调试tf2

四元数基本原理。

本教程介绍ROS 2中四元数的基本用法。

调试tf2问题。

本教程向介绍调试tf2相关问题的系统方法。

将传感器消息与tf2一起使用

对tf2_ros::MessageFilter使用标记数据类型。

本教程教您如何使用tf2_ros::MessageFilter处理标记的数据类型。