嵌入式开发中,UART、I2C、RS485等使用非常的的,我们可以通过下面的介绍可以认识一下每一个功能会他们的特性。

UART通用异步收发器(串口通信)

一般来说,开发过程中我们通常使用串口进行DEBUG调试。

原理

通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,通常称为UART)是一种异步收发传输器,用处非常广泛,几乎两个单片机间的通讯、USB-TTL、RS-232都是使用UART协]协议,将数据通过串列通讯进行传输。它在发送端执行并行到串行数据转换,在接收端执行串行到并行数据转换。它是通用的,因为传输速度、数据速度等参数是可配置的。

UART 中的字母“A”代表异步,即没有时钟信号来同步或验证从发送器发送并由接收器接收的数据(异步串行通信)。这与同步串行通信相反,同步串行通信使用发送器和接收器之间共享的时钟信号来“同步”它们之间的数据。在 UART 中,发送器和接收器必须事先就时序参数达成一致。此外,UART 在每个数据字的开头和结尾使用特殊位来同步发送器和接收器。

UART是异步,全双工串口总线。它比同步串口复杂很多。有两根线,一根TXD用于发送一根RXD用于接收

特别注意:串口连接线,两个串口设备连接的时候

  • 其中一个设备的TXD需要连接另外一个设备的RXD。

  • 相反一个设备的RXD需要连接厉害一个设备的TXD.

UART通常并不直接产生或接收其他设备的外部信号。独立接口设备用于转换信号的逻辑电平给UART。

通信可能有3种模式

  • _单工_(仅在一个方向,没有规定接收设备将信息发送回发送设备)
  • _全双工_(两个设备同时发送和接收)
  • _半双工_(设备轮流发送和接收)

数据帧

对于发送设备和接收设备来说,两者的串行通信配置应该设置为完全相同。

起始位:起始位是在实际数据之前添加的同步位。起始位标记数据包的开始。通常,空闲数据线,即当数据传输线不传输任何数据时,它保持在高电压电平。为了开始数据传输,发送 UART 将数据线从高电平拉到低电平(从 1 到 0)。接收 UART 在数据线上检测到这种从高到低的变化,并开始读取实际数据。通常,只有一个起始位。

数据位:数据位是从发送方传输到接收方的实际数据。数据帧的长度可以在 5 到 9 之间(如果不使用奇偶校验,则为 9 位,如果使用奇偶校验,则只有 8 位)。

奇偶校验位:奇偶校验允许接收器检查接收到的数据是否正确。Parity 是一个低级错误检查系统,有两种类型:偶校验和奇校验。。

停止位:表示一帧数据的结束。电平逻辑为“1”停止位,顾名思义,标志着数据包的结束。它通常有两位长,但通常只使用一个位。为了结束传输,UART 将数据线保持在高电压。

如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。

接收

UART受一个内部时钟信号控制。该时钟信号是数据传输率的倍频,典型是比特率的8或16倍。接收器在每个时钟脉冲时测试接收到的信号状态是否为开始比特。如果开始比特的低电平持续传输1个比特所需时间的一半以上,则认为开始了一个数据帧的传输;否则,则认为是毛刺脉冲并忽略。到了下一个比特时间后,线路状态被采样并送入移位寄存器。约定的表示一个字符的所有数据比特(典型为5至8个比特)接收后,移位寄存器可被接收系统使用。UART将设置一个标记指出新数据可用,并产生一个处理器中断请求主机处理器取走接收到的数据。UART的标准特性之一是在接收下一个字符时在缓冲区保存上一个接收到的字符。这种“双缓冲区”允许接收计算机用一个字符的传输时段来获取缓冲区内的上一个字符。许多UART有更大的FIFO缓冲区,允许主机一次处理多个字符,这特别适用于高传输数据率的串行通信同时处理器中断频率有限(通常中断间隔大于1毫秒)。

发送器

UART把一个字符放入移位寄存器,就开始产生一个数据帧。对于全双工通信,发送与接受使用不同的移位寄存器。使用更大的FIFO使得主机处理器或DMA(Direct Memory Access)放置多个字节后由UART自主完成传输。UART用一个标志位表示busy。在 UART 中,发送器和接收器必须事先就时序参数达成一致。此外,UART 在每个数据字的开头和结尾使用特殊位来同步发送器和接收器。在基于 UART 的串行通信中,发送器和接收器以下列方式进行通信。发送设备上的 UART 即发送 UART 从 CPU(微处理器或微控制器)接收并行数据并将其转换为串行数据。

该串行数据被传输到接收设备上的 UART,即接收 UART。接收 UART 在接收到串行数据后,将其转换回并行数据并提供给 CPU。由于 UART 涉及并行到串行和串行到并行数据转换,因此移位寄存器是 UART 硬件的重要组成部分(具体来说是两个移位寄存器:发送器移位寄存器和接收器移位寄存器)。

UART规则

如前所述,UART 中没有时钟信号,发送器和接收器必须就串行通信的某些规则达成一致,以实现无差错数据传输。规则包括:

  • 同步位(开始位和停止位)
  • 奇偶校验位
  • 数据位和
  • 波特率

波特率:使用波特率提到数据传输的速度。发送 UART 和接收 UART 必须在波特率上达成一致才能成功传输数据。

波特率以每秒位数为单位。一些标准波特率是 4800 bps、9600 bps、19200 bps、115200 bps 等。其中 9600 bps 波特率是最常用的一种。

让我们看一个示例数据帧,其中必须传输两个数据块,即 00101101 和 11010011。帧的格式是 9600 8N1 即 9600 bps,有 8 位数据,无奇偶校验和 1 个停止位。在这个例子中,我们没有使用奇偶校验位

I2C总线

I2C(集成电路总线),由Philips公司(2006年迁移到NXP)在1980年代初开发的一种简单、双线双向的同步串行总线,它利用一根时钟线和一根数据线在连接总线的两个器件之间进行信息的传递,为设备之间数据交换提供了一种简单高效的方法。每个连接到总线上的器件都有唯一的地址,任何器件既可以作为主机也可以作为从机,但同一时刻只允许有一个主机。

总线是一同步、半双工双向的两线式串口总线。它由两条总线组成:串行时钟线SCL串行数据线SDA

  • SCL线——负责产生同步时钟脉冲
  • SDA线——负责在设备间传输串行数据

    该总线可以将多个I2C设备连接到该系统上。连接到I2C总线上的设备既可以用作主设备,也可以用作从设备。

主设备负责控制通信,通过对数据传输进行初始化,来发送数据并产生所需的同步时钟脉冲。从设备则是等待来自主设备的命令,并响应命令接收。

主设备和从设备都可以作为发送设备或接收设备。无论主设备是作为发送设备还是接收设备,同步时钟信号都只能由主设备产生。

如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入输出口(SDA),另外还需一个输出口(SCL)。

I2C总线特点

  • 仅仅只需要SDA、SCL两条总线;
  • 没有严格的波特率要求;
  • 所有组件之间都存在简单的主/从关系,连接到总线的每个设备均可通过唯一地址进行软件寻址;
  • I2C是真正的多主设备总线,可提供仲裁和冲突检测;
  • 传输速度分为四种模式:
    • 标准模式(Standard Mode):100 Kbps
    • 快速模式(Fast Mode):400 Kbps
    • 高速模式(High speed mode):3.4 Mbps
    • 超快速模式(Ultra fast mode):5 Mbps
    • 最大主设备数:无限制;
    • 最大从机数:理论上,1008个从节点,寻址模式的最大节点数为2的7次方或2的10次方,但有16个地址保留用于特殊用途。
      I2C有16个保留I2C地址。这些地址对应于以下两种模式之一:0000 XXX或1111 XXX。下表显示了为特殊目的而保留的I2C地址。
I2C 节点地址 R/W 位功能描述
0000 000 0 广播地址
0000 000 1 起始字节
0000 001 X CBUS 地址
0000 010 X 保留用于不同总线格式
0000 011 X 保留供未来使用
0000 1XX X 高速模式主代码
1111 1XX X 保留供未来使用
1111 0XX X 10位节点地址

SPI串行外设接口

  • 串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口。SPI 用于CPU与各种外围器件进行全双工、同步串行通讯。它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效从机选择线CS。当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。即完成一个字节数据传输的实质是两个器件寄存器内容的交换。主SPI的时钟信号(SCK)使传输同步。SPI总线是同步、全双工双向的4线式串行接口总线。它是由“单个主设备+多个从设备”构成的系统。
  • 在系统中,只要任意时刻只有一个主设备是处于激活状态的,就可以存在多个SPI主设备。常运用于AD转换器、EEPROM、FLASH、实时时钟、数字信号处理器和数字信号解码器之间实现通信。

为了实现通信,SPI共有4条信号线,分别是

  • 主设备出、从设备入(Master Out Slave In,MOSI):由主设备向从设备传输数据的信号线,也称为从设备输入(Slave Input/Slave Data In,SI/SDI)。

  • 主设备入、从设备出(Master In Slave Out,MISO):由从设备向主设备传输数据的信号线,也称为从设备输出(Slave Output/Slave Data Out,SO/SDO)。

  • 串行时钟(Serial Clock,SCLK):传输时钟信号的信号线。

  • 从设备选择(Slave Select,SS):用于选择从设备的信号线,低电平有效。

    SPI 的工作时序模式由CPOL(Clock Polarity,时钟极性)和CPHA(Clock Phase,时钟相位)之间的相位关系决定,CPOL 表示时钟信号的初始电平的状态,CPOL 为0 表示时钟信号初始状态为低电平,为1 表示时钟信号的初始电平是高电平。CPHA 表示在哪个时钟沿采样数据,CPHA 为0 表示在首个时钟变化沿采样数据,而CPHA 为1 则表示在第二个时钟变化沿采样数据。

SPI总线特点

  • 全双工
  • 可以当作主机或从机工作
  • 提供频率可编程时钟
  • 发送结束中断标志
  • 写冲突保护
  • 总线竞争保护等

UART、SPI、I2C比较

  • I2C线更少,比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。
  • SPI实现要简单一些,UART需要固定的波特率,就是说两位数据的间隔要相等,而SPI则无所谓,因为它是有时钟的协议。
  • I2C的速度比SPI慢一点,协议比SPI复杂一点,但是连线也比标准的SPI要少。
  • UART一帧可以传5/6/7/8位,I2C必须是8位。I2C和SPI都从最高位开始传。
  • SPI用片选信号选择从机,I2C用地址选择从机。

RS232串口通信

传输线有两根,地线一根。电平是负逻辑:

-3V~-15V逻辑“1”,+3V~+15V逻辑“0”。

RS-232串口通信传输距离15米左右。可做到双向传输,全双工通讯,传输速率低20kbps 。

下图是DB9公头和母头的定义,一般用的最多的是RXD、TXD、GND三个信号。

TTL和RS-232互转

单片机接口一般是TTL电平,如果接232电平的外设,就需要加TTL转RS232的模块。如下图,可用芯片MAX232进行转换。

RS422串口通信

RS-422有4根信号线:两根发送、两根接收和一根地线,是全双工通信。

它有一个主设备,其余为从设备,从设备之间不能通信,所以RS-422支持点对多的双向通信。

RS485串口通信

RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。

采用两线半双工传输,最大速率10Mb/s,电平逻辑是两线的电平差来决定的,提高抗干扰能力,传输距离长(几十米到上千米)。

+2V~+6V逻辑“1”,-2~-6V逻辑“0”。

TTL转成RS-485很常见,比如MAX485,参考电路如下

RE引脚:接收器输出使能(低电平有效)。

DE引脚:发送器输出使能(高电平有效)。可以直接通过MCU的IO端口控制。

CAN总线

CAN是控制器局域网络的简称,是一种能够实现分布式实时控制的串行通信网络。CAN总线的功能复杂且智能。

CAN总线网络主要挂在CAN_H和CAN_L,各个节点通过这两条线实现信号的串行差分传输,为了避免信号的反射和干扰,还需要在CAN_H和CAN_L之间接上120欧姆的终端电阻。

每一个设备既可做主设备也可做从设备。CAN总线的通信距离可达10千米(速率低于5Kbps),速度可达1Mbps(通信距离小于40M)。

CAN电平逻辑

CAN总线采用”线与”的规则进行总线冲裁,1&0为0,所以称0为显性,1为隐性。

从电位上看,因为规定高电位为0,低电位为1,同时发出信号时实际呈现为高电位,从现象上看就像0覆盖了1,所以称0为显性,1为隐性。

USB通信串行总线

USB接口最少有四根线,其中有两根是数据线,而所有的USB数据传输都是通过这两根线完成。它的通信远比串口复杂的多。

两根数据线采用差分传输,即需要两根数据线配合才能传输一个bit,因此是半双工通信,同一时间只能发送或者接收。

USB 规定,如果电压电平不变,代表逻辑1;如果电压电平变化,则代表逻辑0。

SD卡

SD卡是一种存储卡,可用于手机作为内存卡使用。

嵌入式中,单片机与SD卡通信有两种模式:

  • SPI总线通信模式
  • SD总线通信模式

值得注意的是,SD总线模式中有4条数据线;SPI总线模式中仅有一条数据线(MOSI和MISO不能同时读数据,也不能同时写数据);这样在嵌入式中,单片机与SD卡通信时采用SD总线模式比SPI总线模式速度快几倍。

1-WIRE总线

1-Wire由美国Dallas(达拉斯)公司推出,是一种异步半双工串行传输。采用单根信号线,既传输时钟又传输数据,而且数据传输是双向的。

单总线的数据传输速率一般为16.3Kbit/s,最大可达142 Kbit/s,通常情况下采用100Kbit/s以下的速率传输数据。

1-Wire线端口为漏极开路或三态门的端口,因此一般需要加上拉电阻Rp,通常选用5K~10KΩ

主要应用在:打印墨盒或医疗消耗品的识别;印刷电路板、配件及外设的识别和认证。

DMA直接存储器访问

DMA是STM32内的一个硬件模块,它独立于CPU,在外围设备和内存之间进行数据传输,解放了CPU,可使CPU的效率大大提高。

它可以高速访问外设、内存,传输不受CPU的控制,并且是双向通信。因此,使用DMA可以大大提高数据传输速度,这也是ARM架构的一个亮点——DMA总线控制。DMA就相应于一条高速公路,专用、高速的特性。如果不使用DMA,也可以达到目的,只是达到目的的时间比较长。

Ethernet以太网

以太网是一种 计算机局域网技术。 IEEE组织的 IEEE 802.3标准制定了以太网的技术标准,它规定了包括 物理层的连线、电子信号和介质访问层 协议的内容。
以太网有两类:第一类是经典以太网,第二类是 交换式以太网,使用了一种称为 交换机的设备连接不同的计算机。经典以太网是以太网的原始形式,运行速度从3~10 Mbps不等;而交换式以太网正是广泛应用的以太网,可运行在100、1000和10000Mbps那样的高速率,分别以 快速以太网、千兆以太网和万兆以太网的形式呈现。 网的标准 拓扑结构为 总线型拓扑,但目前的快速以太网( 100BASE-T、 1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机来进行网络连接和组织。如此一来,以太网的拓扑结构就成了 星型;但在逻辑上,以太网仍然使用总线型拓扑和 CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。

以太网是目前应用最普遍的局域网技术。以太网接口可分为协议层和物理层。协议层是由一个叫MAC(Media Access Layer)控制器的单一模块实现。物理层由两部分组成,即PHY(Physical Layer)和传输器。目前很多主板的南桥芯片已包含了以太网MAC控制功能,只是未提供物理层接口。因此,需外接PHY芯片以提供以太网的接入通道。

网络变压器的作用是:

  • 耦合差分信号,抗干扰能力更强

  • 变压器隔离网线端不同设备的不同电平,隔离直流信号

    以太网接口参考电路,如下图所示。