机器人路径规划——关于贝塞尔曲线方程的理解

266
0
2020年6月10日 09时39分

一阶贝塞尔曲线(包含两个控制点)

假设控制点为P0​和P1,曲线方程为:

 

机器人路径规划——关于贝塞尔曲线方程的理解插图

 

其中t∈[0,1]。

 

这个方程可以理解为,从P0出发,朝着P1的方向前进||P_1-P_0||t的距离,从而得到了点B(t)的位置。

 

另外,之所以是一阶贝塞尔曲线是因为方程是关于t的一阶多项式。

 

二阶贝塞尔曲线(包含三个控制点)

设控制点为P0,P1​和P2​,曲线方程为:

 

机器人路径规划——关于贝塞尔曲线方程的理解插图(1)

 

其中t∈[0,1],A(t)=[P0+(P1−P0)t],C(t)=[P1+(P2−P1)t]。

 

以上方程可以理解为,从A点出发,朝C点运动 ||C-A||t的距离,最终得到B的位置。

 

另外,A点的位置又是,从P0​出发,朝着P1​的方向前进||P_1-P_0||t的距离获得的。C点的位置也是类似。

 

三阶贝塞尔曲线(包含四个控制点)

设控制点为P0​,P1​,P2​和P4,曲线方程为:

 

机器人路径规划——关于贝塞尔曲线方程的理解插图(2)

 

下图展示了三阶贝塞尔曲线的绘制过程:

 

机器人路径规划——关于贝塞尔曲线方程的理解插图(3)

 

根据四个控制点,先确定A1,A2,A3​的位置,而后再确定C1,C2的位置,最后再根据C1,C2​确定B的位置。

 

说明

1、贝塞尔曲线在tt tt处的切线方向为:∂B/∂t

发表评论

后才能评论