1 导引 2 基于平移(translation)嵌入的方法 2.1 MTransE 2.2 IPTransE 2.3 BootEA 2.4 NAEA 2.5 TransEdge 参考 1 导引 在知识图谱领域,最重要的任务之一就是实体对齐 [1](entity alignment, EA)。实体对齐旨在从不同的知识图谱中识别
1 导引 我们在上一篇博客《知识图谱实体对齐1:基于平移(translation)嵌入的方法》中介绍了如何对基于平移嵌入+对齐损失来完成知识图谱中的实体对齐。这些方法都是通过两个平移嵌入模型来将知识图谱G1和G2的重叠实体分别进行嵌入,并加上一个对齐损失来完成对齐。不过,除了基于平移的嵌入模型之外,是否还有其它方式呢? 答案是肯定的。目前已经提出了许多基于GNN的实体对齐方法[1],这些方法不
计算机科学一大定律:许多看似过时的东西可能过一段时间又会以新的形式再次回归。 1 模型平均方法(MA) 1.1 算法描述与实现 我们在博客《分布式机器学习:同步并行SGD算法的实现与复杂度分析(PySpark)》中介绍的SSGD算法由于通信比较频繁,在通信与计算比较大时(不同节点位于不同的地理位置),难以取得理想的加速效果。接下来我们介绍一种通信频率比较低的同步算法——模
1 分布式机器学习概述 大规模机器学习训练常面临计算量大、训练数据大(单机存不下)、模型规模大的问题,对此分布式机器学习是一个很好的解决方案。 1)对于计算量大的问题,分布式多机并行运算可以基本解决。不过需要与传统HPC中的共享内存式的多线程并行运算(如OpenMP)以及CPU-GPU计算架构做区分,这两种单机的计算模式我们一般称为计算并行。 2)对于训练数据大的问题,需要将数据
1 导引 我们在博客《分布式机器学习:同步并行SGD算法的实现与复杂度分析(PySpark)》和博客《分布式机器学习:模型平均MA与弹性平均EASGD(PySpark) 》中介绍的都是同步算法。同步算法的共性是所有的节点会以一定的频率进行全局同步。然而,当工作节点的计算性能存在差异,或者某些工作节点无法正常工作(比如死机)的时候,分布式系统的整体运行效率不好,甚至无法完成训练任务。为了解决此
积分
粉丝
勋章
TA还没有专栏噢
第三方账号登入
看不清?点击更换
第三方账号登入
QQ 微博 微信