0. 简介 之前作者前段时间在研究BEV的相关算法,当时就觉得BEV算法好是好,但是所需要的内存以及计算资源实在是太大了,无法实时在真实场景中运行。我们知道多视图(multi-view)三维目标检测具有低成本、高效率的特点,具有广阔的应用前景。然而,由于缺乏深度信息,通过透视图准确地检测目标是极其困难的。当前的方法倾向于为图像编码器采用重主干,使得它们不适用于现实世界的部署。与图像不同的是,激光
0. 简介 现在的SLAM算法在静态环境中表现良好,但在动态环境中很容易失败。最近的工作将基于深度学习的语义信息引入到SLAM系统以减轻动态对象的影响。然而,在资源受限的机器人的动态环境中应用鲁棒定位仍然具有挑战性。所以《RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments》提出了一种用于动
0. 简介 自从ikd-tree出来后,现在越来越多的工作瞄准了增量式这种方法,比如说激光惯导里程计(LIDAR-Inertial Odometry,LIO)的高精度跟踪通常涉及最小化点到平面距离的k最近邻(kNN)搜索,然而,这样做的成本是维护大型局部地图并为每个点执行kNN平面拟合。在《LIO-PPF: Fast LiDAR-Inertial Odometry via Incremental
0. 简介 之前我们看了许多VIO或者LIO的工作,而我们也需要关注在整个流程中GNss的作用,我们知道GNss自主系统提供全球参考定位的非常流行的手段之一。然而,信号反射与建筑物遮挡导致GNss定位性能在城市峡谷中受到很大挑战。鉴于GNss测量高度依赖环境且与时间有关,传统的基于滤波的GNss定位方法无法同时探索历史测量之间的时间相关性。因此,基于滤波的估计器对突的异常测量值很敏感。本文《To
0. 简介 商场、超市等大多数现实场景的环境随时都在变化。不考虑这些变化的预建地图很容易变得过时。因此,有必要拥有一个最新的环境模型,以促进机器人的长期运行。为此《A General Framework for Lifelong Localization and Mapping in Changing Environment》一文提出了一个通用的全生命周期同步定位和建图 (SLAM) 框架。该框
0. 简介 最近在群里被萌新询问2D激光雷达的工作还能做什么,我当时有点难以回答,cartographer作为2D的集大成者,留给后续工作者改进的地方已经很少了。直到我最近看到了这一篇文章《Dynamic Occupancy Grid Mapping with Recurrent Neural Networks》,也给我个人提供了一个比较新的方向,即动态栅格地图的更新方式。这里我们详细看一下这篇
0. 简介 作为激光里程计,常用的方法一般是特征点法或者体素法,最近Mars实验室发表了一篇文章《Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry》,同时还开源了代码在Github上。文中为雷达里程计提出了一种高效的概率自适应体素建图方法。地图是体素的集合,每个体素包含一个平
0. 简介 对于视觉里程计而言,在面对低纹理场景时,往往会出现退化的问题,究其原因是人造环境往往很难找到足够数量的点特征。而其他的几何视觉线索则是比较容易找到,在城市等场景中,通常表现出结构规律,如平行性或正交性,满足曼哈顿世界的假设。之前我们已经在《经典文献阅读之—PL-SLAM》文中介绍了点线SLAM的形式,相关的具体代码我们可以在Github上找到 1. 文章贡献 在本文章中,我们则进
0. 简介 对于激光雷达而言,玻璃等场景一直是漏检的主要问题,而如何去采用一种有效地方法能够完成激光雷达对室内场景的玻璃物体的检测和包含,这一直是研究重点。当LiDAR数据是主要的外部输入时,玻璃对象不能正确配准。这是因为入射光主要穿过玻璃对象或从光源反射,导致玻璃表面的距离测量不准确。而文章《Cartographer_glass: 2D Graph SLAM Framework using L
0. 简介 相信最近大家已经被Transformer给洗脑了,作者也在《多传感器融合综述—-FOV与BEV》中提到了深度学习相关的技术。这就随之带动的就是如何使用基于纯相机的鸟瞰图(BEV)感知技术来替代昂贵的激光雷达传感器,并使其能够应用在自动驾驶上,这目前是急需解决的问题,由于现在Transformer的计算仍然需要大量资源来执行车载推理,无法满足实时性。为此我们来看一下这一篇《Fast-B
0. 简介 对于视觉SLAM而言,除了使用特征点法来完成VIO以外,还可以使用光流法来完成VIO的估计。而传统的光流法受环境,光照变化严重,所以有时候会出现光流偏差等问题。所以现在有越来越多的工作朝着深度学习的方向扩展,比如说这一篇文章《FlowFormer: A Transformer Architecture for Optical Flow》,目前已经被ECCV 2022收录。这里作者也在
0. 简介 最近几年随着自动驾驶行业的火热,对高精地图的需求也日渐庞大。由于高精(HD)地图的相关可扩展性成本,需要不断的维护,并涉及繁琐的人工标签。这就导致需要大量的人力来做这样的事情,而是否存在一些比较简单的办法来完成道路、人行道、人行横道和车道等静态地标进行自动和准确的标注,这就是科研界几年中所需要关心的内容,本文主要围绕着这篇IROS 2020的文章《Probabilistic Sema
0. 简介 最近几年随着深度学习的发展,现在通过深度学习去预估出景深的做法已经日渐成熟,所以随之而来的是本文的出现《Real-Time Dense Monocular SLAM with Neural Radiance Fields》。这篇文章是一个结合单目稠密SLAM和层次化体素神经辐射场的3D场景重建算法,能实时地用图像序列实现准确的辐射场构建,并且不需要位姿或深度输入。核心思想是,
0. 简介 在复杂动态环境下,如何去建立一个稳定的SLAM地图是至关重要的。但是现在当前的SLAM系统主要是面向静态场景。目前相较于点云的分类与分割而言。视觉的识别与分割会更加容易。这就可以根据语义信息提高对环境的理解。文章《Multi-modal Semantic SLAM for Complex Dynamic Environments》提出了一个鲁棒的多模态语义框架去解决slam在复杂和动
0. 简介 传统的地图生成方法一般是依靠Lidar和IMU结合的,但是问题在于,目前Lidar和IMU的紧耦合主要集中在前端里程计,基本没有涉及到后端全局优化以及建图的融合。为此文章《Globally Consistent and Tightly Coupled 3D LiDAR Inertial Mapping》提出了一种改进的地图生成方法,并设计一个在所有阶段(前端里程计+后端全局优
0. 简介 Transfomer最近几年已经霸榜了各个领域,之前我们在《经典文献阅读之—Deformable DETR》这篇博客中对DETR这个系列进行了梳理,但是想着既然写了图像处理领域的方法介绍,正好也按照这个顺序来对另一个非常著名的Swin Transformer框架。Swin Transformer框架相较于传统Transformer精度和速度比CNN稍差,Swin Transforme
0. 简介 之前作者基本都在围绕着特征点提取的路径在学习,最近看到了最近点云PCL推送的《Structure PLP-SLAM: Efficient Sparse Mapping and Localization using Point, Line and Plane for Monocular, RGB-D and Stereo Cameras》。这个工作是基于OpenVSLAM架构的,但
0. 简介 作为Transformer在机器视觉领域的爆火,在自动驾驶领域目前很多工作都集中在前视转鸟瞰图的方法中,这里我们来讲2020年一篇经典的论文《Predicting Semantic Map Representations from Images using Pyramid Occupancy Networks》,其工作被近两年的新的BEV算法进行充分的验证以及对比,从今天的眼光来看,
0. 简介 对于激光和视觉里程计而言,我们在面试和日常工作中会经常听到,在长时间在平坦道路上直行会导致维度的退化。定位的退化主要是因为约束的减少,比如NDT需要三个正交方向的约束才能很好的匹配,但若在狭长的走廊上或者隧道环境,条件单一,即使人肉眼观看激光雷达数据,也很难判断机器人所处的位置。而这篇博客来回顾下LOAM的作者Ji Zhang发表在2016年IROS上的一篇关于优化问题的退化
0. 简介 这是一片22年的ICRA 2022杰出论文《Translating Images into Maps》。来自萨里大学的研究者引入了注意力机制,将自动驾驶的 2D 图像转换为鸟瞰图,使得模型的识别准确率提升了 15%。相关的代码已经开源,下面是他们Github开源代码。这里由于作者之前并不是搞NLP的,所以也是边学边写的,如有问题请多多提出。 1. 文章贡献 与以往的方法不同,这项
自动驾驶、移动机器人相关经典论文阅读
博客
泡泡
积分
勋章
精选经典文献阅读之--BEVDistill(BEV蒸馏)
经典文献阅读之--Dynamic-VINS(动态点滤除VINS)
经典文献阅读之--LIO-PPF(增量平面预拟合LIO)
经典文献阅读之--GraphGNSSLib(因子图GNSS优化)
经典文献阅读之--Lifelong SLAM(变化环境中Lifelong定位建图)
经典文献阅读之--DOGM(动态占用网格图)
经典文献阅读之--VoxelMap(体素激光里程计)
经典文献阅读之--MSC-VO(曼哈顿和结构约束VIO)
经典文献阅读之--Cartographer_glass(激光SLAM中玻璃物体的检测)
经典文献阅读之--Fast-BEV(实时鸟瞰图感知)
经典文献阅读之--FlowFormer(Transformer结构光流估计)
经典文献阅读之--Probabilistic Semantic Mapping for Urban Autonomous Driving Applications(概率语义地图构建)
经典文献阅读之--NeRF-SLAM(单目稠密重建)
经典文献阅读之--Multi-modal Semantic SLAM(多模态语义SLAM)
经典文献阅读之--Globally Consistent and Tightly Coupled 3D LiDAR Inertial Mapping(紧耦合3D激光雷达)
经典文献阅读之--Swin Transformer
经典文献阅读之--PL-SLAM(点线SLAM)
经典文献阅读之--PON
经典文献阅读之--On Degeneracy of Optimization-based State Estimation Problems(防止非线性优化退化)
经典文献阅读之--Translating Images into Maps(鸟瞰图分割)
经典文献阅读之--BoW3D
经典文献阅读之--FEC
经典文献阅读之--Cam2BEV
经典文献阅读之--Yolov7
经典文献阅读之--DLO
经典文献阅读之--SuMa++
经典文献阅读之--Deformable DETR
第三方账号登入
看不清?点击更换
第三方账号登入
QQ 微博 微信