0. 简介 对于3d bounding box而言,近几年随着自动驾驶的火热,其标注工具也日渐多了起来,本篇文章不讲具体的算法,这里主要聚焦于这些开源的3d bounding box标注工具,以及他们是怎么使用的。这里借鉴了我想静静,博主的博客作为基础,然后再结合自己的使用与了解完成扩充。 1. 3d-bat 在本文中,我们专注于在新型 3D 边界框注释工具箱 (3D BAT) 的帮助下获取
0. 简介 对于自动驾驶的预测和规划而言,能够有效的对目标产生可解释性是非常有必要的,而《Interpretable Goal-based Prediction and Planning for Autonomous Driving》文中就提出了一种综合的自动驾驶预测和规划系统,它利用合理的逆规划来识别其他车辆的意图。目标识别可以通过蒙特卡罗树搜索(MCTS)算法来规划自我车辆的最佳动作。逆规划
0. 简介 作为SLAMer在建图时最怕的就是大量的动态障碍物存在,这会导致建图的不精确,而本文主要围绕着如何剔除动态障碍物开始讲起,并提供一种快速的过滤障碍物的方法。 1. 主要方法 在调研的过程中主要存在有两种方法,第一种如文章《通过帧间确定动态障碍物,剔除动态3D点云数据后用于生成栅格地图》所说的方法。通过扫描局部地图,并使用kd-tree完成点云的过滤,通过两帧之间的变化消除动态障碍
0. 简介 对于点云的深度学习分割而言,其中主要组成部分为两块,一个是点云bin文件,一个是特征的label文件,而point_labeler这个点云标注工具就能很好的让我们去标注自身想要的数据集。下面我们将来详细的介绍point_labeler这个工具的使用方法。 1. 环境安装 环境依赖: catkin Eigen >= 3.2 boost >= 1.54 QT
0. 简介 这篇文章我们介绍一下论文“High-Definition Map Generation Technologies For Autonomous Driving: A Review“,2022年6月11日,来自加拿大Ontario Tech University。相较于网上的其他文章,本文更在意向读者更轻松全面的了解文章中介绍的方法,让读者从总体上了解高精地图生成。 高清地图近年来备
1. Open3D-ML安装和使用 首先对于Open3d,我们要先对源码下载 # make sure you have the latest pip version pip install --upgrade pip # install open3d pip install open3d 然后选择要安装兼容版本的PyTorch或TensorFlow,Open3d中提供了两种安装方式
0. 前言 前段时间去大概了解了如何去滤除动态障碍物的问题,也根据调研去做了一些工作,这一篇文章主要向大家展示如何将Lidar-MOS和ROS2结合起来去使用。 1. 环境安装 文中使用了Salsanext,Rangenet ++和Mine三个模块作为baseline来设计和测试动态障碍物滤除的工作,其中的语义分割工作都是目前已有的,可以去原项目中查看。代码下载: #下载程序 git c
0. openpilot是什么 首先我们需要对openpilot要有个清楚的认知,openpilot主要基于python语言编写。openpilot进程之间通过ZMQ进行通信,使用订阅者和发布者模式,进程订阅其他进程的信息,进程一系列处理,将得到的结果发布出去,让其他进程获取其处理结果。整个openpilot项目可以分为以下几个模块:定位、决策、控制这几个部分。openpilot的实现原理类似于
0. 简介 关于车辆的全景环视系统网上已经有很多的资料,然而几乎没有可供参考的代码,这一点对入门的新人来说非常不友好。全景环视系统,又称AVM。在自动驾驶领域,AVM属于自动泊车系统的一部分,是一种实用性极高、可大幅提升用户体验和驾驶安全性的功能。AVM汽车环视影像系统如图所示,由安装在前保险杠、后备箱、后视镜上的四个外置鱼眼相机构成。该系统包含的算子按照先后顺序:去畸变、四路鱼眼相机联合标定、
0. 前言 逆透视变换(IPM),将相机视角转换成鸟瞰图。其实质是求相机平面与地面的homography矩阵。之前专门有一篇博客来讲《逆透视变换(IPM)多种方式及代码总结》。但是当中还是比较杂乱且没有详细的代码推导的。这篇文章将从三种方式来介绍逆透视变换的三种方法得到homography。这里得到的Homography是可以通过下面的$K_f$转化到现实的坐标系中的。下面的式子为转换矩阵:设
0. 简介 在阅读了许多多传感器工作后,这里作者对多传感器融合的方法做出总结。本文将从单传感器讲起,并一步步去向多传感器方向总结。之前的《多传感器融合详解》博客从算法层面介绍了多传感器的分类以及数据传输的能力,而《多传感器融合感知 —传感器外参标定及在线标定学习》博客则是从标定层面向读者介绍了如何对多传感器进行先一步的标定处理。而这篇文章将从方法层面总括多传感器的分类以及作者对多传感器的理解与思
0. 简介 作为无人车以及智能机器人而言,在装配过程中各个传感器之间的外参标定一直是比较头疼的问题。这里作者也系统的学习了一下,传感器的外参标定和在线标定问题。下图是我们常用的几个坐标系,而对于常用的外参问题经常是IMU/GNSS与车体坐标的外参、Lidar和Camera的外参、Lidar和Lidar的外参、Lidar和IMU/GNSS的外参。 1. 离线外参标定 1.1 IMU/GNSS与
0. 简介 在阅读了近些年的前视的工作后,发现现在以特斯拉为首的BEV纯视觉语义分割方法目前也越来收到关注,并吸引了大量的研究工作,但是灵活的,不依赖内外参的任意位置安装单个或多个摄像头仍然是一个挑战,而Nullmax就提出了《BEVSegFormer: Bird’s Eye View Semantic Segmentation From Arbitrary Camera Rigs》以用来解决这
0. 简介 最近在群里划水时,看到很多初学的SLAMer面对精度评估这个问题无从下手。而精度评估确实是在SLAM算法实际评估中急需一种手段和工具,本文将从2维室内和3维室外两个层面来向各位展示如何通过各种手段来对SLAM算法完成。 1. 2D评估—基于cartographer 室内的评估方案比较多样,作者也选取了几种方法来实现二维层面上的室内定位性能评估 1.1 直尺和角度计 这种是作为
0. 简介 定位模块是自动驾驶最核心的模块之一,定位又包括全局定位和局部定位,对于自动驾驶,其精度需要达到厘米级别。传统的AGV使用一类SLAM(simultaneous localization and mapping)的方法进行同时建图和定位,但是该方法实现代价高,难度大,难以应用到自动驾驶领域。自动驾驶车辆行驶速度快,距离远,环境复杂,使得SLAM的精度下降,同时远距离的行驶将导致实时构建
0. 简介 作为SLAMer常用的优化工具,我们会经常接触Ceres这一优化工具,但是在优化的过程中一直不支持GPU加速,这就导致优化性能难以提高,但是在Ceres2.1这一版本后,GPU加速开始适用于Ceres,为此本文来采坑看一看如何适用GPU加速Ceres。 1. 删除原本Ceres 通过find . -name ceres*函数我们可以发现ceres代码路径是存在在下面三个路径下的,
0. 简介 protobuf也叫protocol buffer是google 的一种数据交换的格式,它独立于语言,独立于平台。google 提供了多种语言的实现:java、c#、c++、go 和 python,每一种实现都包含了相应语言的编译器以及库文件。 由于它是一种二进制的格式,比使用 xml 、json进行数据交换快许多。可以把它用于分布式应用之间的数据通信或者异构环境下的数据交换。作为一种
0.背景 在自动/辅助驾驶中,车道线的检测非常重要。在前视摄像头拍摄的图像中,由于透视效应的存在,本来平行的事物,在图像中确实相交的。而IPM变换就是消除这种透视效应,所以也叫逆透视。 而我们需要认识的变换主要分为三类透视变换、仿射变换、单应性变换: 透视变换:不能保证物体形状的“平行性”。仿射变换是透视变换的特殊形式。透视变换是将一个平面投影到另一个平面,简单理解就是把一张图片投影到另一
0. 前言 最近尝试着去在SLAM当中使用深度学习,而目前的SLAM基本上是基于C++的,而现有的Pytorch、Tensorflow这类框架均是基于python的。所以如何将Python这类脚本文件来在C++这类可执行文件中运行,这是非常有必要去研究的,而网络上虽然存在有例子,但是很多都比较杂乱,所以本篇文章将网络上常用的方法进行整理,以供后面初学者有迹可循 1. 模型认识 我们知道,目前基于C
0. 前言 最近公司需要实现基于HD-MAP的自动驾驶定位技术,而这方面之前涉及的较少,自动驾驶这部分的定位技术与SLAM类似,但是缺少了建图的工程,使用HD-MAP的形式来实现车辆的定位(个人感觉类似机器人SLAM当中的初始化+回环定位的问题)。下面是我个人的思考与归纳 1. AVP-SLAM 从AVP-SLAM自动泊车SLAM中我们发现基础(封闭)的视觉定位模式避不开下面几个步骤 A 首先是I
无人驾驶
博客
泡泡
积分
勋章
常见的3d bounding box标注工具
经典文献阅读之--IGP2(可解释性目标的自动驾驶预测与规划)
3D帧间匹配-----剔除动态障碍物
SemanticKITTI点云标注工具
经典文献阅读之--用于自动驾驶的高清地图生成技术
基于Open3D的Lidar-Segment
Lidar-MOS 安装与使用
openpilot了解与分析
AVM 环视拼接方法介绍
IPM 鸟瞰图公式转换与推导
多传感器融合综述---FOV与BEV
多传感器融合感知 --传感器外参标定及在线标定学习
BEVSegFormer---BEV的语义分割
SLAM精度评估
自动驾驶之高精地图
Ceres2.1 GPU加速的开始
Protobuf 二进制文件学习及解析
逆透视变换(IPM)多种方式及代码总结
深度学习之从Python到C++
基于HD-MAP的自动驾驶定位技术
第三方账号登入
看不清?点击更换
第三方账号登入
QQ 微博 微信