0. 简介 之前我们在《经典文献阅读之—R-PCC(基于距离图像的点云压缩方法)》中提到了,我们可以通过一些算法层面来完成数据的压缩,而其实更简单或者说更直接的方法就是使用half这种形式来完成数据压缩。 1. half和float Half是用16位表示浮点数的一种数据类型,在IEEE 754中也有规定,这种数据类型在深度学习系统中的应用比较广泛。但是在当前主流cpu上,不支持half类型
0. 简介 作者之前对KF,EKF,UKF,PF都进行了学习,但是有两块KF还没有进行精细的学习,而相较于IEKF而言,ESKF会在滤波和融合定位中更常使用,当然学习了KF后,对于其他的变种卡尔曼滤波理解起来会非常容易,基本上问题不是很大。状态误差卡尔曼(ESKF)的应用,它是卡尔曼滤波器的变种中应用最为广泛的一种,与EKF一样,它也是一种针对时变系统的非线性滤波器。但是与EKF不同的是,它
0. 简介 在研究晶体振荡器和原子钟的稳定性时,人们发现这些系统的相位噪声中不仅有白噪声,而且有闪烁噪声。使用标准差分析这类噪声时发现结果是无法收敛的。为了解决这个问题,David Allan于1966年提出了Allan方差分析,该方法不仅可以准确识别噪声类型,还能精确确定噪声的特性参数,其最大优点在于对各类噪声的幂律谱项都是收敛的。对于IMU标定而言,标定可以分为确定性误差和随机误差,确定性误
0.简介 为了保证激光雷达的360°环境覆盖,我们常常需要用到多传感器的拼接,如果我们单纯的取读取激光雷达的信息会出现如下图的情况,两个激光雷达会发生重叠,这就需要我们去对激光雷达进行标定。 <arg name="device_ip1" default="192.168.1.200" /> <arg name="device_ip2" default="192.168.1.200
0. 前言 在使用深度学习时候,我们可以有效地提取出我们想要的结果,但是常常会缺少深度信息(双目测景深会耗费大量的计算资源)。因此将激光雷达和单目摄像头相结合,可以有效的补充室内环境的深度信息,而目前3D的激光雷达成本高昂,这里提供一个2D激光雷达的解决方案。 1. 相机坐标系变换 上文提过, 在相机世界中, 3D外界点转换到2D图像像素点转换方程是我们可以通过相机的内在参数 intrinsic
0.前言 多传感器融合(Multi-sensor Fusion, MSF)是利用计算机技术,将来自多传感器或多源的信息和数据以一定的准则进行自动分析和综合,以完成所需的决策和估计而进行的信息处理过程。和人的感知相似,不同的传感器拥有其他传感器不可替代的作用,当各种传感器进行多层次,多空间的信息互补和优化组合处理,最终产生对观测环境的一致性解释。具体来讲,多传感器数据融合处理: (1)多个不同类
相机标定 作为t265而言,虽然官方提供了标定的出厂内参rs-enumerate-devices -c可以获得,但是我们在vins和orbslam中仍然有可能需要自己标定数据,这里给出教程。 首先我们要明确适用的模型,一般普通相机小孔模型即可,而鱼眼镜头则是适用KB4(Kannala-Brandt Camera Model)或者Mei模型 目前可以用kalibr或者vins-fusion里面的ca
简介 D455作为新一代的英特尔RealSense深度摄像头,网上的资料很少,同时除了官方的资料以外,我们很难找到相关的ROS相关的文档。同时由于D455支持的是realsense SDK2.0。所以SDK1.0的数据也不适用。本文档主要提供了一套完整的Ubuntu 18.04 + Realsense D455 + ROS melodic 的代码。 详细步骤 1.环境依赖 依赖环境 版本号
ubuntu16.04+ROS+Inter D415安装本文主要参考kkruaruarua博文结合自己的实际操作写成 ROS部分安装鉴于我在安装ros和D415驱动的过程中遇到的许多问题,在此和大家分享,希望可以帮助到大家 安装ubuntu16.04,我用的是64bit的系统,安装步骤大家可以参考百度,很多更改软件源,我用的是清华的软件源,但是在我刚装好系统的时候出现了这个问题 解决办法如下:先s
ZED摄像头 获得中心点深度,未考虑RGB与深度映射(可参考下面D415) #include <iostream> #include <fstream> #include <sstream> #include <algorithm> #include <dirent.h> #include <opencv2/core/core.hp
近期有一个项目用到了Azure Kinect,之前Kinect 1与Kinect 2均使用过的老用户,自然不能放过这个机会。为此专门对Azure Kinect进行了学习,以下是这次自己调研摸索的一些成果 Azure Kinect简介 在芯片顶级会议 ISSCC 2018微软亮相自家的一百万像素的 ToF传感器,与此在论文发表三个月后,小型化的 Kinect for Azure (K4A)工业用开发
传感器的一些操作
博客
泡泡
积分
勋章
精选数据压缩的常用手段以及方法
来一个很有意思的ESKF吧
IMU标定之---Allan方差
2D激光雷达的多传感器拼接
Rplidar A1雷达投影到相机平面
多传感器融合详解
在ros环境下的RealsenceT265标定以及Vins mono运行
在ROS中实现多Realscene D455数据的读取并发布
ubuntu16.04 Inter D415安装指南(SDK+ROS+Python)
常用摄像头一些点云深度矫正ROS程序(ZED & kinect v2 & D415)
Azure Kinect(K4A)人体识别跟踪进阶
第三方账号登入
看不清?点击更换
第三方账号登入
QQ 微博 微信