前言


本篇博客为博主毕设的一部分,此部分主要解决海上船舶目标实时分类检测。在Tensorflow的环境下,采用YOLOv3(keras)算法,最终mAP可达到95.66%,下面详细的介绍了我的训练过程。


Seaship数据集:下载


下面为部分检测结果的截图:
在这里插入图片描述


第二部分:【目标检测】基于yolo3和sort的多目标检测与跟踪





一、准备环节




计算机环境:Win10 + Python3.6 + cuda9.0
主要依赖


tensorflow-gpu 1.12.0
keras-gpu 2.2.4
opencv 4.2.0
pillow
numpy
matplotlib



    深度学习框架


    如果是第一次使用深度学习进行目标检测,需要安装深度学习框架,本项目使用的是Tensorflow深度学习框架。


    【TensorFlow】Window10搭建GPU环境(CUDA、cuDNN)




    必选部分


    源码https://github.com/qqwweee/keras-yolo3
    权重文件:yolo.h5(被墙,可采用下面方法)


    在YOLO官网下载YOLO的权重文件。通过以下命令将.weights文件转换为.h5模型。


    python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
    • 1



    可选部分


    mAP计算:【目标检测】kera-yolo3模型计算mAP
    mAP源码:https://github.com/Cartucho/mAP


    修改mAP源码,针对keras-yolov3的检测结果计算mAP。




    数据集


    Seaship数据集:下载


    数据集介绍:SeaShips A Large-Scale Precisely Annotated Dataset for Ship Detection




    二、代码结构分析


    在训练时需要对其中的一些文件进行修改,同时也需要增添一些文件和文件夹。左侧为原工程,右侧为修改后的工程。
    在这里插入图片描述


    需要修改/增添部分


    文件 / 文件夹 作用
    dataset文件夹 存放数据集
    mAP文件夹 计算模型的mAP
    model文件夹 存放训练出的模型
    model_data文件夹 训练模型所需的文件
    result文件夹 存放测试图片检测结果
    voc_annotation.py 将数据集文本生产符合格式要求的训练文本
    test.txt 通过voc_annotation.py生成的测试集文本
    train.txt 通过voc_annotation.py生成的训练集文本
    val.txt 通过voc_annotation.py生成的验证集文本
    train.py 训练模型
    yolo.py 测试模型,生成检测结果(保留,不修改)
    test_yolo.py yolo.py的复制文件,复制之后进行修改
    yolov3.cfg yolo模型的配置文件

    无需修改部分(主要部分,次要部分不再介绍):


    文件 / 文件夹 作用
    yolo3文件夹 存放yolo相关算法的文件夹
    convert 将.weight模型转换成.h5模型
    yolo_video 用于检测视频文件的库
    kmeans kmean聚类用于生成Anchors

    三、制作数据集


    3.1 LabelImg 标记图片


    标记图片就是对图片中的待识别目标进行标记,如果识别的目标时猫、狗,那就用方块标记出猫或狗,它们的标签分别为cat、dog。标记完成后,生成与原文件名相同的.xml文件。
    在这里插入图片描述


    标记图片软件LabelImg,可参考:图像标注工具labelImg安装教程及使用方法


    3.2 VOC 数据集格式介绍


    深度学习所使用的数据集格式大部分采用VOC格式。所以我们也要将自己所标记的图片转变到VOC格式。


    可查看此博客了解VOC数据集的组成。


    3.3 转化成VOC数据集


    标记好所有图片后,所有的jpgxml均在一个目录下。我们新建一个文件夹dataset,在dataset目录下新建JPEGImagesAnnotationsImageSets三个文件夹。


    将所有jpg文件放入JPEGImages中;
    将所有xml文件放入Annotations中;
    ImageSets文件夹内新建Main备用。


    3.4 生成ImageSets


    使用代码make_main_txt.py在ImgeSets/Main目录下生成train.txt, trainval.txt, val.txt, test.txt


    该代码存放的目录如下图,make_main_txt.pyImageSets同级。
    在这里插入图片描述


    代码make_main_txt.py


    # -_- coding:utf-8 -_-
    import os
    import random

    train_percent = 0.8 # 训练集占数据的比例
    val_percent = 0.15 # 验证集占数据的比例
    test_percent = 0.05 # 测试集占数据集的比例

    xmlfilepath = ‘Annotations’
    txtsavepath = ‘ImageSets/Main’
    total_xml = os.listdir(xmlfilepath)

    num = len(total_xml) # 图片数量
    list = range(num)

    train_num = int(num _ train_percent) # train的数量
    test_num = int(num _ test_percent) # test的数量
    val_num = int(num _ val_percent) # val的数量

    trainval = random.sample(list, train_num + val_num)
    train = random.sample(trainval, train_num)

    ftest = open(‘ImageSets/Main/test.txt’, ‘w’)
    ftrain = open(‘ImageSets/Main/train.txt’, ‘w’)
    fval = open(‘ImageSets/Main/val.txt’, ‘w’)

    for i in list:
    name = total_xml[i][:-4] + ‘\n’
    if i in trainval:
    if i in train:
    ftrain.write(name)
    else:
    fval.write(name)
    else:
    ftest.write(name)

    ftrain.close()
    ftest.close()
    fval.close()

    运行之后,将在ImgeSets/Main目录下生成下面这些文件。在这里插入图片描述


    四、训练模型


    4.1 修改voc_annocation.py


    该文件用于生成下图所示的文本文件,包括train.txttest.txtval.txt
    在这里插入图片描述


    其中包含图片的目录,以及图片中标签位置数据。
    在这里插入图片描述


    对文件进行修改,修改结果如下,修改了类别(classes)、图片的打开目录和保存目录。


    # -_- coding:utf-8 -_-
    import xml.etree.ElementTree as ET
    from os import getcwd

    sets = [‘train’, ‘val’, ‘test’]
    classes = [“person”, “hat”]


    def convert_annotation(image_id, list_file):
    print(image_id)
    in_file = open(‘dataset/Annotations/%s.xml’ % image_id)
    tree = ET.parse(in_file)
    root = tree.getroot()

    for obj in root.iter(‘object’):
    difficult = obj.find(‘difficult’).text
    cls = obj.find(‘name’).text
    if cls not in classes or int(difficult)==1:
    continue
    cls_id = classes.index(cls)
    xmlbox = obj.find(‘bndbox’)
    b = (int(xmlbox.find(‘xmin’).text), int(xmlbox.find(‘ymin’).text), int(xmlbox.find(‘xmax’).text), int(xmlbox.find(‘ymax’).text))
    list_file.write(“ “ + “,”.join([str(a) for a in b]) + ‘,’ + str(cls_id))

    wd = getcwd()

    for image_set in sets:
    image_ids = open(dataset/ImageSets/Main/%s.txt’ % image_set).read().strip().split()
    print(image_ids)
    list_file = open(‘%s.txt’ % image_set, ‘w’)

    for image_id in image_ids:
    list_file.write(‘dataset/JPEGImages/%s.jpg’ % image_id)
    convert_annotation(image_id, list_file)
    list_file.write(‘\n’)
    list_file.close()
    • 36

    4.2 修改yolo3.cfg


    打开yolo3.cfg,搜索yolo(共三处),每次均按下图修改。
    在这里插入图片描述
    filters:3_(5+len(classes))


    classes:训练的类别数


    random:原来是1,显存小改为0


    4.3 增加my_classes.txt


    目录如下图所示,将my_classes.txt的内容修改为为自己训练的类别。
    在这里插入图片描述


    4.4 修改train.py


    这是代码最主要的部分,需要根据训练的情况进行调整:


    18行:需要创建改目录
    19行:因为自己的类与源码不同,所以需修改成classes_path = ‘model_data/my_classes.txt’
    52行:将if True改成if False,不使用该种训练方式。通过该方式训练出的模型效果很差。
    76行:根据GPU显存进行调节,越大越好,由于GPU限制,我只能设置为3。
    82行:迭代次数,初始值为50,为了迭代100次,所以此处设置epochs=150。当过拟合时会自动停止训练。


    “””
    Retrain the YOLO model for your own dataset.
    “””


    import numpy as np
    import keras.backend as K
    from keras.layers import Input, Lambda
    from keras.models import Model
    from keras.optimizers import Adam
    from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping

    from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
    from yolo3.utils import get_random_data


    def _main():
    annotation_path = ‘train.txt’
    log_dir = ‘model/001/‘
    classes_path = ‘model_data/my_classes.txt’
    anchors_path = ‘model_data/yolo_anchors.txt’
    class_names = get_classes(classes_path)
    num_classes = len(class_names)
    anchors = get_anchors(anchors_path)

    input_shape = (416,416) # multiple of 32, hw

    is_tiny_version = len(anchors)==6 # default setting
    if is_tiny_version:
    model = create_tiny_model(input_shape, anchors, num_classes,
    freeze_body=2, weights_path=‘model_data/tiny_yolo_weights.h5’)
    else:
    model = create_model(input_shape, anchors, num_classes,
    freeze_body=2, weights_path=‘model_data/yolo_weights.h5’) # make sure you know what you freeze

    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + ‘ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5’,
    monitor=‘val_loss’, save_weights_only=True, save_best_only=True, period=3)
    reduce_lr = ReduceLROnPlateau(monitor=‘val_loss’, factor=0.1, patience=3, verbose=1)
    early_stopping = EarlyStopping(monitor=‘val_loss’, min_delta=0, patience=10, verbose=1)

    val_split = 0.1
    with open(annotation_path) as f:
    lines = f.readlines()
    np.random.seed(10101)
    np.random.shuffle(lines)
    np.random.seed(None)
    num_val = int(len(lines)_val_split)
    num_train = len(lines) - num_val

    # Train with frozen layers first, to get a stable loss.
    # Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
    if False:
    model.compile(optimizer=Adam(lr=1e-3), loss={
    # use custom yolo_loss Lambda layer.
    ‘yolo_loss’: lambda y_true, y_pred: y_pred})

    batch_size = 16
    print(‘Train on {} samples, val on {} samples, with batch size {}.’.format(num_train, num_val, batch_size))
    model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
    steps_per_epoch=max(1, num_train//batch_size),
    validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
    validation_steps=max(1, num_val//batch_size),
    epochs=50,
    initial_epoch=0,
    callbacks=[logging, checkpoint])
    model.save_weights(log_dir + ‘trained_weights_stage_1.h5’)

    # Unfreeze and continue training, to fine-tune.
    # Train longer if the result is not good.
    if True:
    for i in range(len(model.layers)):
    model.layers[i].trainable = True
    model.compile(optimizer=Adam(lr=1e-4), loss={‘yolo_loss’: lambda y_true, y_pred: y_pred}) # recompile to apply the change
    print(‘Unfreeze all of the layers.’)

    batch_size = 3 # note that more GPU memory is required after unfreezing the body
    print(‘Train on {} samples, val on {} samples, with batch size {}.’.format(num_train, num_val, batch_size))
    model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
    steps_per_epoch=max(1, num_train//batch_size),
    validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
    validation_steps=max(1, num_val//batch_size),
    epochs=150,
    initial_epoch=50,
    callbacks=[logging, checkpoint, reduce_lr, early_stopping])
    model.save_weights(log_dir + ‘trained_weights_final.h5’)

    # Further training if needed.


    def get_classes(classes_path):
    ‘’’loads the classes’’’
    with open(classes_path) as f:
    class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

    def get_anchors(anchors_path):
    ‘’’loads the anchors from a file’’’
    with open(anchors_path) as f:
    anchors = f.readline()
    anchors = [float(x) for x in anchors.split(‘,’)]
    return np.array(anchors).reshape(-1, 2)


    def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
    weights_path=‘model_data/yolo_weights.h5’):
    ‘’’create the training model’’’
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
    num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print(‘Create YOLOv3 model with {} anchors and {} classes.’.format(num_anchors, num_classes))

    if load_pretrained:
    model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
    print(‘Load weights {}.’.format(weights_path))
    if freeze_body in [1, 2]:
    # Freeze darknet53 body or freeze all but 3 output layers.
    num = (185, len(model_body.layers)-3)[freeze_body-1]
    for i in range(num): model_body.layers[i].trainable = False
    print(‘Freeze the first {} layers of total {} layers.’.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name=‘yolo_loss’,
    arguments={‘anchors’: anchors, ‘num_classes’: num_classes, ‘ignore_thresh’: 0.5})(
    [_model_body.output, _y_true])
    model = Model([model_body.input, _y_true], model_loss)

    return model

    def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
    weights_path=‘model_data/tiny_yolo_weights.h5’):
    ‘’’create the training model, for Tiny YOLOv3’’’
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
    num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print(‘Create Tiny YOLOv3 model with {} anchors and {} classes.’.format(num_anchors, num_classes))

    if load_pretrained:
    model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
    print(‘Load weights {}.’.format(weights_path))
    if freeze_body in [1, 2]:
    # Freeze the darknet body or freeze all but 2 output layers.
    num = (20, len(model_body.layers)-2)[freeze_body-1]
    for i in range(num): model_body.layers[i].trainable = False
    print(‘Freeze the first {} layers of total {} layers.’.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name=‘yolo_loss’,
    arguments={‘anchors’: anchors, ‘num_classes’: num_classes, ‘ignore_thresh’: 0.7})(
    [_model_body.output, _y_true])
    model = Model([model_body.input, _y_true], model_loss)

    return model

    def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    ‘’’data generator for fit_generator’’’
    n = len(annotation_lines)
    i = 0
    while True:
    image_data = []
    box_data = []
    for b in range(batch_size):
    if i==0:
    np.random.shuffle(annotation_lines)
    image, box = get_random_data(annotation_lines[i], input_shape, random=True)
    image_data.append(image)
    box_data.append(box)
    i = (i+1) % n
    image_data = np.array(image_data)
    box_data = np.array(box_data)
    y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
    yield [image_data, _y_true], np.zeros(batch_size)

    def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    if n==0 or batch_size<=0: return None
    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)


    if __name__ == ‘__main__‘:
    _main()


    注意,需要创建model/000目录:
    在这里插入图片描述
    这个目录的作用就是存放自己的数据集训练得到的模型。不然程序运行到最后会因为找不到该路径而发生错误。




    训练结束后,会生成很多模型,很多如图中标注的文件,还有最终的模型trained_weights_final.h5,正常情况下就选择最终的模型,如果前面的模型loss较低也可以选择前面的模型。
    在这里插入图片描述


    五、验证模型


    创建test_yolo.py文件:


    43行:模型存放位置


    如果计算mAP,取消257~270行的注释,并创建如下文件目录:
    在这里插入图片描述
    代码如下:


    # -_- coding: utf-8 -_-
    “””
    Class definition of YOLO_v3 style detection model on image and video
    “””


    import colorsys
    import os
    import time
    from timeit import default_timer as timer

    import numpy as np
    from keras import backend as K
    from keras.models import load_model
    from keras.layers import Input
    from PIL import Image, ImageFont, ImageDraw

    from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
    from yolo3.utils import letterbox_image
    import os
    from keras.utils import multi_gpu_model


    dir_project = os.getcwd() # 获取当前目录

    # 创建创建一个存储检测结果的dir
    result_path = ‘./result’
    if not os.path.exists(result_path):
    os.makedirs(result_path)

    # result如果之前存放的有文件,全部清除
    for i in os.listdir(result_path):
    path_file = os.path.join(result_path, i)
    if os.path.isfile(path_file):
    os.remove(path_file)

    # 创建一个记录检测结果的文件
    txt_path = result_path + ‘/result.txt’
    file = open(txt_path, ‘w’)


    class YOLO(object):
    _defaults = {
    “model_path”: ‘model/001/trained_weights_final.h5’,
    “anchors_path”: ‘model_data/yolo_anchors.txt’,
    “classes_path”: ‘model_data/my_classes.txt’,
    “score” : 0.3,
    “iou” : 0.45,
    “model_image_size” : (416, 416),
    “gpu_num” : 1,
    }

    @classmethod
    def get_defaults(cls, n):
    if n in cls._defaults:
    return cls._defaults[n]
    else:
    return “Unrecognized attribute name ‘“ + n + “‘“

    def __init__(self, **kwargs):
    self.__dict__.update(self._defaults) # set up default values
    self.__dict__.update(kwargs) # and update with user overrides
    self.class_names = self._get_class()
    self.anchors = self._get_anchors()
    self.sess = K.get_session()
    self.boxes, self.scores, self.classes = self.generate()

    def _get_class(self):
    classes_path = os.path.expanduser(self.classes_path)
    with open(classes_path) as f:
    class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

    def _get_anchors(self):
    anchors_path = os.path.expanduser(self.anchors_path)
    with open(anchors_path) as f:
    anchors = f.readline()
    anchors = [float(x) for x in anchors.split(‘,’)]
    return np.array(anchors).reshape(-1, 2)

    def generate(self):
    model_path = os.path.expanduser(self.model_path)
    assert model_path.endswith(‘.h5’), ‘Keras model or weights must be a .h5 file.’

    # Load model, or construct model and load weights.
    num_anchors = len(self.anchors)
    num_classes = len(self.class_names)
    is_tiny_version = num_anchors==6 # default setting
    try:
    self.yolo_model = load_model(model_path, compile=False)
    except:
    self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
    if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
    self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
    else:
    assert self.yolo_model.layers[-1].output_shape[-1] == \
    num_anchors/len(self.yolo_model.output) _ (num_classes + 5), \
    ‘Mismatch between model and given anchor and class sizes’

    print(‘{} model, anchors, and classes loaded.’.format(model_path))

    # Generate colors for drawing bounding boxes.
    hsv_tuples = [(x / len(self.class_names), 1., 1.)
    for x in range(len(self.class_names))]
    self.colors = list(map(lambda x: colorsys.hsv_to_rgb(_x), hsv_tuples))
    self.colors = list(
    map(lambda x: (int(x[0] _ 255), int(x[1] _ 255), int(x[2] _ 255)),
    self.colors))
    np.random.seed(10101) # Fixed seed for consistent colors across runs.
    np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
    np.random.seed(None) # Reset seed to default.

    # Generate output tensor targets for filtered bounding boxes.
    self.input_image_shape = K.placeholder(shape=(2, ))
    if self.gpu_num>=2:
    self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
    boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
    len(self.class_names), self.input_image_shape,
    score_threshold=self.score, iou_threshold=self.iou)
    return boxes, scores, classes

    def detect_image(self, image):
    start = timer()

    if self.model_image_size != (None, None):
    assert self.model_image_size[0]%32 == 0, ‘Multiples of 32 required’
    assert self.model_image_size[1]%32 == 0, ‘Multiples of 32 required’
    boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
    else:
    new_image_size = (image.width - (image.width % 32),
    image.height - (image.height % 32))
    boxed_image = letterbox_image(image, new_image_size)
    image_data = np.array(boxed_image, dtype=‘float32’)

    print(image_data.shape)
    image_data /= 255.
    image_data = np.expand_dims(image_data, 0) # Add batch dimension.

    out_boxes, out_scores, out_classes = self.sess.run(
    [self.boxes, self.scores, self.classes],
    feed_dict={
    self.yolo_model.input: image_data,
    self.input_image_shape: [image.size[1], image.size[0]],
    K.learning_phase(): 0
    })

    print(‘Found {} boxes for {}’.format(len(out_boxes), ‘img’))

    font = ImageFont.truetype(font=‘font/FiraMono-Medium.otf’,
    size=np.floor(3e-2 _ image.size[1] + 0.5).astype(‘int32’))
    thickness = (image.size[0] + image.size[1]) // 300

    # # 保存框检测出的框的个数 (添加)
    # file.write(‘find ‘ + str(len(out_boxes)) + ‘ target(s) \n’)

    for i, c in reversed(list(enumerate(out_classes))):
    predicted_class = self.class_names[c]
    box = out_boxes[i]
    score = out_scores[i]

    label = ‘{} {:.2f}’.format(predicted_class, score)
    draw = ImageDraw.Draw(image)
    label_size = draw.textsize(label, font)

    top, left, bottom, right = box
    top = max(0, np.floor(top + 0.5).astype(‘int32’))
    left = max(0, np.floor(left + 0.5).astype(‘int32’))
    bottom = min(image.size[1], np.floor(bottom + 0.5).astype(‘int32’))
    right = min(image.size[0], np.floor(right + 0.5).astype(‘int32’))

    # # 写入检测位置(添加)
    # file.write(
    # predicted_class + ‘ score: ‘ + str(score) + ‘ \nlocation: top: ‘ + str(top) + ‘、 bottom: ‘ + str(
    # bottom) + ‘、 left: ‘ + str(left) + ‘、 right: ‘ + str(right) + ‘\n’)

    file.write(predicted_class + ‘ ‘ + str(score) + ‘ ‘ + str(left) + ‘ ‘ + str(top) + ‘ ‘ + str(right) + ‘ ‘ + str(bottom) + ‘;’)

    print(label, (left, top), (right, bottom))

    if top - label_size[1] >= 0:
    text_origin = np.array([left, top - label_size[1]])
    else:
    text_origin = np.array([left, top + 1])

    # My kingdom for a good redistributable image drawing library.
    for i in range(thickness):
    draw.rectangle(
    [left + i, top + i, right - i, bottom - i],
    outline=self.colors[c])
    draw.rectangle(
    [tuple(text_origin), tuple(text_origin + label_size)],
    fill=self.colors[c])
    draw.text(text_origin, label, fill=(0, 0, 0), font=font)
    del draw
    end = timer()
    print(end - start)
    return image

    def close_session(self):
    self.sess.close()



    def detect_video(yolo, video_path, output_path=“”):
    import cv2
    vid = cv2.VideoCapture(video_path)
    if not vid.isOpened():
    raise IOError(“Couldn’t open webcam or video”)
    video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC)) # 获得视频编码MPEG4/H264
    video_fps = vid.get(cv2.CAP_PROP_FPS)
    video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
    int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    isOutput = True if output_path != “” else False
    if isOutput:
    print(“!!! TYPE:”, type(output_path), type(video_FourCC), type(video_fps), type(video_size))
    out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
    accum_time = 0
    curr_fps = 0
    fps = “FPS: ??”
    prev_time = timer()
    while True:
    return_value, frame = vid.read()
    image = Image.fromarray(frame) # 从array转换成image
    image = yolo.detect_image(image)
    result = np.asarray(image)
    curr_time = timer()
    exec_time = curr_time - prev_time
    prev_time = curr_time
    accum_time = accum_time + exec_time
    curr_fps = curr_fps + 1
    if accum_time > 1:
    accum_time = accum_time - 1
    fps = “FPS: “ + str(curr_fps)
    curr_fps = 0
    cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
    fontScale=0.50, color=(255, 0, 0), thickness=2)
    cv2.namedWindow(“result”, cv2.WINDOW_NORMAL)
    cv2.imshow(“result”, result)
    if isOutput:
    out.write(result)
    if cv2.waitKey(1) & 0xFF == ord(‘q’):
    break
    yolo.close_session()


    # 批量处理文件
    if __name__ == ‘__main__‘:
    # 读取test文件
    with open(“dataset/ImageSets/Main/test.txt”, ‘r’) as f: # 打开文件
    test_list = f.readlines() # 读取文件
    test_list = [x.strip() for x in test_list if x.strip() != ‘’] # 去除/n
    # print(test_list)

    t1 = time.time()
    yolo = YOLO()

    # for filename in test_list:
    # image_path = ‘dataset/JPEGImages/‘+filename+’.jpg’
    # portion = os.path.split(image_path)
    # # file.write(portion[1]+’ detect_result:\n’)
    # file.write(image_path + ‘ ‘)
    # image = Image.open(image_path)
    # image_mAP_save_path = dir_project + ‘/mAP/input/images-optional/‘
    # image.save(image_mAP_save_path + filename + ‘.jpg’)
    # r_image = yolo.detect_image(image)
    # file.write(‘\n’)
    # #r_image.show() 显示检测结果
    # image_save_path = ‘./result/result_‘+portion[1]
    # print(‘detect result save to….:’+image_save_path)
    # r_image.save(image_save_path)

    time_sum = time.time() - t1
    # file.write(‘time sum: ‘+str(time_sum)+’s’)
    print(‘time sum:’,time_sum)
    file.close()
    yolo.close_session()

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277

    六、检测结果


    这部分就放一些图片好了:
    在这里插入图片描述


    在这里插入图片描述


    七、计算mAP


    前面有提到过


    mAP计算:【目标检测】kera-yolo3模型计算mAP
    mAP源码:https://github.com/Cartucho/mAP


    修改mAP源码,针对keras-yolov3的检测结果计算mAP。




    mAP在95.66%,正确率也在95%左右。
    在这里插入图片描述




    预测边界框与真实边界框对比:
    在这里插入图片描述


    此篇博客内容为博主的毕设的一部分,如有不正确的部分欢迎指正,如有问题欢迎讨论~


    八、检测模型下载




    很多人向博主要检测模型,所以我就将它放在百度云上了,需要的朋友可以自行提取。


    链接:https://pan.baidu.com/s/1N_DgVYrWFrM9syybrpBFSw
    提取码:de2i