描述

之前文章介绍过DBSCAN,使用C++实现过该算法。现在针对某个项目,利用python实现DBSCAN和Kmeans算法。
项目简介:利用某传感器可以采集场景中的点云,每一帧都可以采集数量不等的点(x,y,z)。想要利用DBSCAN和Kmeans对点云进行无监督式的聚类,并利用匈牙利匹配对不同帧的点云簇进行匹配,从而实现跟踪效果。
项目备注:这是别人拜托我来写的,我花了一点点时间。从我的角度,这种方法解决该项目,简直是胡扯。。。不过,项目和人不靠谱,并不影响代码的有效性,权当一种消遣。

数据格式

点云数据用csv格式文件存储,格式如下:
第1行 Frame # | X | Y | Z
第2行 1 -0.4 1.04 0.11
第100行 1 15.4 7.45 0.16
第101行 2 89.3 4.78 3.65
第114行 2 34.4 6.04 0.56
………
这里不贴出数据,有关数据部分的代码,可以调整为你自己所需的格式

DBSCAN算法代码

  • 实现功能:对点云进行DBSCAN聚类,并得到每一次聚类的点云簇的个数

加载所需的库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN  
from sklearn.preprocessing import StandardScaler

从数据中不断按帧数来读取数据,从frame_start读,最多不能超过frame_end,直到读取点的数量达到num_threshold后停止。可以理解为,自适应地读取一定数量的点云,从而使得点云总数拓充到一个可以聚类的程度。

def adaption_frame(data, frame_start, frame_end, num_threshold=1000): 
    data_x = []
    data_y = []
    data_z = []
    for i in range(frame_start, frame_end):
        target_frame = i  # 替换为你想要读取的Frame值

        # 筛选出指定Frame值的点云数据
        table_data = data[data['Frame #'] == target_frame]

        x_arr = table_data['X'].values
        data_x = np.concatenate((data_x, x_arr), axis=0)

        y_arr = table_data['Y'].values
        data_y = np.concatenate((data_y, y_arr), axis=0)  

        z_arr = table_data['Z'].values
        data_z = np.concatenate((data_z, z_arr), axis=0)  

        if data_x.shape[0] > num_threshold:
            break

    return data_x, data_y, data_z

利用坐标值,简单的对点云进行去噪

def valid_data(data_x, data_y, data_z):
    # 创建一个布尔数组,检查每个元素是否在 -2 到 2 之间  
    # 使用 & 操作符来确保 A、B、C 的对应元素都满足条件  
    condition = (data_x >= -5) & (data_x <= 5) & (data_y>= -5) & (data_y <= 5) & (data_z >= -5) & (data_z <= 5)  

    # 使用布尔数组来索引 A、B、C,过滤出满足条件的元素  
    data_x_valid = data_x[condition]  
    data_y_valid = data_y[condition]  
    data_z_valid = data_z[condition]  

    # 输出新的数组大小  
#     print("x valid shape:", data_x_valid.shape)  
#     print("y valid  shape:", data_y_valid.shape)  
#     print("z valid  shape:", data_z_valid.shape)

    return data_x_valid, data_y_valid, data_z_valid

用于点云的绘图

def draw_data_origin(data_x, data_y, data_z):
    # 创建3D绘图
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # 绘制点云
    ax.scatter(data_x, data_y, data_z, s=0.1)  # s控制点的大小

    # 设置轴标签
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    ax.set_title(f'Point Cloud at Frame {1}')

    # 显示图形
    plt.show()

DBSCAN代码

def dbscan(data_x, data_y, data_z):
    # 将 X, Y, Z 合并成一个二维数组  
    data_input = np.column_stack((data_x, data_y, data_z))  

    # 标准化数据(对于许多聚类算法来说,标准化是一个好习惯)  
    scaler = StandardScaler()  
    data_scaled = scaler.fit_transform(data_input)  

    # 初始化 DBSCAN,这里 eps 和 min_samples 是两个重要的参数,需要根据数据特性进行调整  
    # eps 是邻域的半径大小,min_samples 是成为核心对象所需的最小邻居数  
    dbscan = DBSCAN(eps=0.3, min_samples=5)  

    # 进行聚类  
    labels = dbscan.fit_predict(data_scaled)  

    # 计算不同标签的数量,即点簇的个数  
    num_clusters = len(set(labels)) - (1 if -1 in labels else 0)  

    return num_clusters, labels,

对每一次的聚类结果,按照点数大小降序排列。例如:某次聚类结果分为了3类,label为2的点云簇点云数为100,label为2的点云簇点云数为30,label为3的点云簇点云数为50。结果就是对他们进行降序排列。

def order_cluster(clusters_num, labels):    
    unique_labels, inverse_indices = np.unique(labels, return_inverse=True)  
    print(unique_labels.shape)
    print(inverse_indices.shape)
    # 使用 numpy.bincount 统计每个标签出现的次数  

    counts = np.bincount(inverse_indices) 

    # 按照出现次数降序排列  
    sorted_indices = np.argsort(counts)[::-1]  # 获取降序排列的索引  
    sorted_labels = unique_labels[sorted_indices]  # 根据索引重新排列标签  
    sorted_counts = counts[sorted_indices]  # 根据索引重新排列计数  

    # 打印结果  
    for label, count in zip(sorted_labels, sorted_counts):  
        print(f"类别 {label}: {count} 次")

    A = []
    for i in range(unique_labels.shape[0]):
        # 首先找到个数最多的标签  
        most_common_label = sorted_labels[i]  
        # 然后找到这个标签在原始 labels 数组中的位置  
        positions_most_common = np.where(labels == most_common_label)[0]  

        A.append(positions_most_common)

    return A

第一次的聚类结果,需要进行特殊的处理。认为点云数量超过human_size,才可以成为一个有效簇。用这种方式得到第一次聚类结果,存在多少个有效簇,并返回最小簇的点云数

def getFirstJudge(clusters_num, labels_order, human_size):
    num = 0
    for i in range(clusters_num):
        size = labels_order[i].shape[0]
        if size > human_size:
            num = num + 1
            points_num_min = size
    return num, points_num_min

每一次的聚类结果进行处理。如果这一次的聚类结果,有某一次的点云簇点云数大于上一次的最小点数,认为簇的个数可以增加;否则更新最新的最小簇代表的点云个数。

def adaption_cluster(clusters_num, labels_order, num_last, points_num_min, human_size):
    print("上一帧个数:" + str(num_last)+ " 最小的点簇:"+str(points_num_min))
    for i in range(clusters_num):
        shape = labels_order[i].shape
        if i <= num_last-1:
            if labels_order[i].shape[0] < human_size:
                num_last = i + 1
                break
            else:
                points_num_min = labels_order[i].shape
        else:
            if labels_order[i].shape[0] > human_size:
                num_last = num_last + 1
                points_num_min = labels_order[i].shape
            else:
                break;
    return num_last, points_num_min

主函数的实现流程:
1.读取数据
2.积累一定帧数的点云,随后聚类
3.对每一次的聚类结果,进行处理

if __name__ == "__main__":
    # 参数
    human_size = 100
    csv_file = 'data/1.csv'  # 替换为你的CSV文件名

    data = pd.read_csv(csv_file)

    frame_start = data['Frame #'][0]
    frame_end = data['Frame #'][data['Frame #'].shape[0]-1]

    for i in range(100000):
        frame_start = data['Frame #'][i]
        if frame_start < frame_end:
            break
    print(frame_start)
    print(frame_end)

#     frame_start = 0
#     frame_end = 120

    num_last = 0       # 上一帧的人数
    points_num_min = 0 # 满足此个数才是一个人

    flag = 0

    for i in range(frame_start, frame_end):
        data_x, data_y, data_z = adaption_frame(data, frame_start, frame_end, num_threshold=1000)
        data_x, data_y, data_z = valid_data(data_x, data_y, data_z)

        clusters_num, labels = dbscan(data_x, data_y, data_z)
        # draw_data_origin(data_x, data_y, data_z)
        # 使用 numpy.unique 获取唯一标签和它们在原始数组中的索引  

        labels_order = order_cluster(clusters_num, labels)
        print(labels_order[0].shape)
        print(labels_order[1].shape)

        if flag == 0:
            num_last, points_num_min = getFirstJudge(clusters_num, labels_order, human_size)
            flag = 1
        else:
            num_last, points_num_min = adaption_cluster(clusters_num, labels_order, num_last, points_num_min, human_size)

        print("第 "+str(frame_start) + " 帧有 :" + str(num_last)+" 个人")
        if frame_start + 10 > frame_end:
            break
        else:
            frame_start = frame_start + 1

Kmeans算法代码

实现功能:设定K值,对点云进行Kmeans聚类,

加载所需的包

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import DBSCAN  
from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans  
from scipy.optimize import linear_sum_assignment  

from scipy.spatial.distance import cdist

以下代码同之前的DBSCAN一样,在这里不赘述

def adaption_frame(data, frame_start, frame_end, num_threshold=1000): 
def valid_data(data_x, data_y, data_z):
def draw_data_origin(data_x, data_y, data_z):
def dbscan(data_x, data_y, data_z):
def order_cluster(clusters_num, labels):
def getFirstJudge(clusters_num, labels_order, human_size):
def adaption_cluster(clusters_num, labels_order, num_last, points_num_min, human_size):

Kmeans进行聚类

def cluster_kmeans(value, data_x, data_y, data_z):
    data_x = data_x.reshape(-1, 1)
    data_y = data_y.reshape(-1, 1)
    data_z = data_z.reshape(-1, 1)
    # 将三个数组组合成一个(n, 3)的点云数组  
    points = np.hstack((data_x, data_y, data_z))  
    kmeans = KMeans(n_clusters=value, random_state=0).fit(points)  

    return kmeans

从聚类结果中,提取一些特征,用做之后的匈牙利匹配。
这里,提取了三个特征:点云簇的均值、点云数、以及点云排序id

def extract_feature(K, labels_order, data_x, data_y, data_z):
    features = []

    for i in range(K):
        one_feature = []
        data_x_k = data_x[labels_order[i]]
        data_y_k = data_y[labels_order[i]]   
        data_z_k = data_z[labels_order[i]]   
#         print(data_x_k.shape)
#         print(data_y_k.shape)
#         print(data_z_k.shape)

        x_mean = np.mean(data_x_k, axis=0)
        y_mean = np.mean(data_y_k, axis=0)
        z_mean = np.mean(data_z_k, axis=0)
        cluster_mean = np.hstack((x_mean, y_mean, z_mean))

        cluster_points_size = labels_order[i].shape

        one_feature.append(cluster_mean)
        one_feature.append(cluster_points_size)
        one_feature.append(i)
        features.append(one_feature)

    return features

用提取的特征进行匈牙利匹配

def hungarian_match(features_last, features_now):
    # 提取点云中心和点云数  
    centers_last = np.array([a[0] for a in features_last])  
    counts_last = np.array([a[1][0] for a in features_last])  

    centers_now = np.array([b[0] for b in features_now])  
    counts_now = np.array([b[1][0] for b in features_now])  

    # 计算点云中心之间的欧氏距离  
    distance_matrix = cdist(centers_last, centers_now)  

    # 定义基于点云数和距离的成本函数  
    # 这里我们简单地使用距离的倒数和点云数差异的绝对值作为成本  
    # 你可能需要根据你的具体需求来调整这个成本函数  
#     cost_matrix = 1.0 / distance_matrix + np.abs(counts_last[:, np.newaxis] - counts_now)  
    cost_matrix = np.abs(counts_last[:, np.newaxis] - counts_now) + distance_matrix * 10

    # 应用匈牙利算法找到最小成本匹配
    row_ind, col_ind = linear_sum_assignment(cost_matrix)  

    # 打印匹配结果  
    matches = [(features_last[row_ind[i]], features_now[col_ind[i]]) for i in range(len(row_ind))]  
    for match in matches:  
        print(f"Match: last={match[0][0]} (count={match[0][1][0]}), (label={match[0][2]}), now={match[1][0]} (count={match[1][1][0]}), (label={match[1][2]})")

    return matches

主函数

if __name__ == "__main__":
    csv_file = 'data/2.csv'  # 替换为你的CSV文件名
    K = 2
    # 参数
    human_size = 100

    data = pd.read_csv(csv_file)

    frame_start = data['Frame #'][0]
    frame_end = data['Frame #'][data['Frame #'].shape[0]-1]

    for i in range(100000):
        frame_start = data['Frame #'][i]
        if frame_start < frame_end:
            break

    frame_start = 0
    frame_end = 120

    num_last = 0       # 上一帧的人数
    points_num_min = 0 # 满足此个数才是一个人

    flag = 0    
    features_last = []

    data_x_all= [[] for _ in range(K)]
    data_y_all = [[] for _ in range(K)]
    data_z_all = [[] for _ in range(K)]

    for i in range(frame_start, frame_end):
        data_x, data_y, data_z = adaption_frame(data, frame_start, frame_end, num_threshold=1000)
        data_x, data_y, data_z = valid_data(data_x, data_y, data_z)

        result_kmeans = cluster_kmeans(K, data_x, data_y, data_z)

        # 输出每个点的label  
        labels = result_kmeans.labels_

        labels_order = order_cluster(K, labels)

        features = extract_feature(K, labels_order, data_x, data_y, data_z)
        print(features)

        frame_start = frame_start + 1

        if flag == 0:
            features_last = features
            flag = 1

            continue
        else:

            matches = hungarian_match(features_last, features)

            for k in range(K):
                # 第一维代表匹配对数,第二维0代表features_last,1代表features
                # 第三维代表特征维度,第四维每个特征的参数
                data_x_all[k].extend(data_x[labels_order[matches[k][0][2]]])
                data_y_all[k].extend(data_y[labels_order[matches[k][0][2]]])
                data_z_all[k].extend(data_z[labels_order[matches[k][0][2]]])
#                 print(len(data_x_all[k]))

            features_last = features

    # 创建颜色列表,这里使用RGB颜色  
    colors = ['r', 'g', 'b']  # 红色、绿色、蓝色  

    # 创建一个3D图形  
    fig = plt.figure()  
    ax = fig.add_subplot(111, projection='3d')  

    # 遍历每组数据并绘制  
    for k in range(K):  
        x = data_x_all[k]  
        y = data_y_all[k]  
        z = data_z_all[k]  
        color = colors[k % len(colors)]  # 使用循环颜色,以防K大于颜色数量  
        ax.scatter(x, y, z, c=color, label=f'Group {k+1}')  

    # 添加图例  
    ax.legend()  

    # 设置坐标轴标签  
    ax.set_xlabel('X')  
    ax.set_ylabel('Y')  
    ax.set_zlabel('Z')  

    # 显示图形  
    plt.show()

结果

以下就是匈牙利匹配后的结果。红色和绿色分别代表,经过匈牙利匹配后的点云簇,统一了时间维度画在一张图上的结果。如果需要,可以按照时间序列一步步来画,这样可以看到红色和绿色沿着各自的动线前进